Abstract:The flexible distributed generator (FDG) is a new customizable power source which can realize producing electricity and providing other intelligent functions simultaneously. The FDG is composed of an energy-supply system, an input converter system, an output converter system and a filtering system. The functional level control is the core of the output converter system, while the FDG is appearing with the advanced control upgrades of the functional level. Based on analysis of the universal modeling of the FDG, this paper minutely summarizes the control system of the FDG from two aspects including the flexible dispatching and the intelligent assisting. At last, the development tendency of control techniques of the FDG are appraised.
[1] Marei M I, El-Saadany E F, Salama M M A. Flexible distributed generation: FDG[C]//Power Engineering Society Summer Meeting, 2002 IEEE, Chicago, IL, USA, 2002. [2] Zeng Zheng, Yang Huan, Tang Shengqing, et al. Objective-Oriented power quality compensation of multifunctional Grid-Tied inverters and its application in microgrids[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1255-1265. [3] Sawant R R, Chandorkar M C. A multifunctional Four- Leg Grid-Connected compensator[J]. IEEE Transactions on Industry Applications, 2009, 45(1): 249-259. [4] Cesena E A, Capuder T, Mancarella P. Flexible distributed multienergy Generation system expansion planning under uncertainty[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 348-357. [5] Macken K P, Vanthournout K, Van D J, et al. Distributed control of renewable Generation units with integrated active filter[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1353-1360. [6] Cheng Chong, Zeng Zheng, Yang Huan, et al. Multi- objective Optimal Compensation of a Multi-functional Grid-connected Inverter for Power Quality Enhance- ment[C]//2012 15TH International Conference on Electrical Machines and Systems (ICEMS 2012), 2012. [7] Han B, Bae B, Kim H, et al. Combined operation of unified power-quality conditioner with distributed Generation[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 330-338. [8] 张国荣, 张铁良, 丁明, 等. 具有光伏并网发电功能的统一电能质量调节器仿真[J]. 中国电机工程学报, 2007, 27(14): 82-86. [9] 李小叶, 李永丽, 张玮亚, 等. 基于多功能并网逆变器的电能质量控制策略[J]. 电网技术, 2015, 39(2): 556-562. [10] Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters: A survey[J]. IEEE Transactions on Industrial Electronics, 1998, 45(5): 691-703. [11] Golestan S, Freijedo F D, Vidal A, et al. An efficient implementation of generalized delayed signal cancellation PLL[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1085-1094. [12] 龚锦霞, 解大, 张延迟. 三相数字锁相环的原理及性能[J]. 电工技术学报, 2009, 24(10): 94-99, 121. [13] Wang Xiongfei, Blaabjerg F, Loh P C. Grid-Current- Feedback active damping for LCL resonance in Grid- Connected Voltage-Source converters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 213-223. [14] Carugati I, Maestri S, Donato P G, et al. Variable sampling period filter PLL for distorted Three-Phase systems[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 321-330. [15] Zou Zhixiang, Zhou Keliang, Wang Zheng, et al. Frequency-Adaptive Fractional-Order repetitive control of shunt active power filters[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1659-1668. [16] Golestan S, Guerrero J M, Vidal A, et al. PLL with MAF-Based prefiltering stage: Small-Signal modeling and performance enhancement[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4013-4019. [17] 陈新, 王赟程, 华淼杰, 等. 采用混合阻尼自适应调整的并网逆变器控制方法[J]. 中国电机工程学报, 2016, 36(3): 765-774. [18] Jia Yaoqin, Zhao Jiqian, Fu Xiaowei. Direct grid current control of LCL-Filtered Grid-Connected inverter mitigating grid voltage disturbance[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1532- 1541. [19] 邹志翔, 王政, 程明, 等. 双模结构重复控制器在单相并联有源滤波器中的应用[J]. 中国电机工程学报, 2013, 33(36): 88-95. [20] 何志兴, 罗安, 熊桥坡, 等. 模块化多电平变换器模型预测控制[J]. 中国电机工程学报, 2016, 36(5): 1366-1375. [21] Mahmood H, Michaelson D, Jiang Jin. Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1605-1617. [22] Massing J R, Stefanello M, Gruendling H A, et al. Adaptive current control for Grid-Connected converters with LCL filter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4681-4693. [23] 郭源博, 周鑫, 张晓华, 等. 电网不平衡条件下STATCOM的非线性控制[J]. 电力自动化设备, 2012, 32(2): 50-55. [24] 国家电网公司. 关于做好分布式电源并网服务工作意见[Z]. 2013.02.27. [25] Pipattanasomporn M, Feroze H, Rahman S. Multi- Agent systems in a distributed smart grid: design and implementation[C]//2009 IEEE/PES Power Systems Conference and Exposition, 2009, 1-3: 1629-1636. [26] European FP6 project workshop[EB/OL]. http: //www. vsync.eu. [27] Y C, R H, D T. Comparison of methods for implementing virtual synchronous machine on inverters[C]//Proceeding of International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain, 2012. [28] Zhong Qingchang, Weiss G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [29] Adhikari S, Li F, Li H. PQ and PV control of photovoltaic generators in distribution systems[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2929- 2941. [30] Liu Jizhen, Meng Hongmin, Hu Yang, et al. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account[J]. Energy Conversion and Management, 2015, 101: 738- 748. [31] D'arco S. Suul J A.equivalence of virtual synchronous machines and Frequency-Droops for Converter-Based MicroGrids[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 394-395. [32] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-107. [33] Cai Wen, Liu Bangyin, Duan Shanxu, et al. An active Low-Frequency ripple control method based on the virtual capacitor concept for BIPV systems[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1733- 1745. [34] 吕志鹏, 刘海涛, 苏剑, 等. 可改善微网电压调整的容性等效输出阻抗逆变器[J]. 中国电机工程学报, 2013, 33(9): 1-9. [35] 王逸超, 罗安, 金国彬, 等. 单相LCL型并网逆变器新型谐波阻尼策略[J]. 中国电机工程学报, 2014, 34(33): 5803-5810. [36] 曾正, 徐盛友, 冉立, 等. 应用于交流微电网谐振抑制的有源阻尼器及控制[J]. 电力自动化设备, 2016, 36(3): 15-20. [37] He Jinwei, Li Yunwei, Munir M S. A flexible harmonic control approach through Voltage-Controlled DG-Grid interfacing converters[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 444-455. [38] Wang Xiongfei, Blaabjerg F, Loh P C. Virtual RC damping of LCL-Filtered voltage source converters with extended selective harmonic compensation[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4726-4737. [39] Lee T L, Wang Y C, Li J CH, et al. Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 746-756. [40] Tao Haimin, Duarte J L, Hendrix M A. Line-interactive UPS using a fuel cell as the primary source[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 3012-3021. [41] Chen C L, Wang Y B, Lai J, et al. Design of parallel inverters for smooth mode transfer microgrid appli- cations[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 6-15. [42] 施永, 赖纪东, 苏建徽, 等. 微网系统运行模式平滑切换控制策略[J]. 电力系统自动化, 2016, 40(8): 85-91. [43] Karimi-Ghartemani M. Universal integrated synchronization and control for Single-Phase DC/AC converters[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1544-1557. [44] Bevrani H, Ise T, Miura Y. Virtual synchronous generators: A survey and new perspectives[J]. International Journal of Electrical Power & Energy Systems, 2014, 54: 244-254. [45] D'Arco S, Suul J A. Virtual synchronous machines— Classification of implementations and analysis of equivalence to droop controllers for microgrids[C]// PowerTech (POWERTECH), 2013 IEEE Grenoble. IEEE. [46] Fogli G A, Almeida P M, Barbosa P G. Sliding mode control of a shunt Active Power Filter with indirect current measurement[C]//2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, IEEE. [47] Liu Zeng, Liu Jinjun. Indirect current control based seamless transfer of three-phase inverter in distributed Generation[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3368-3383. [48] Liu Zeng, Liu Jinjun, Zhao Yalin. A unified control strategy for Three-Phase inverter in distributed Gener- ation[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1176-1191.