Applied study of narrow-band mode decomposition for identifying the parameters of low frequency oscillations in power systems
Zhang Xiaodian1, Wang Kaifu2, Fang Lianhang1, Liang Yu1, Yang Deyou2
1. Electric Power Research Institute of Hainan Power Grid Co., Ltd, Haikou 570125; 2. School of Electrical Engineering, Northeast Dianli University, Jilin, Jilin 132012
Abstract:According to narrow-band feature of low-frequency oscillation, this paper proposed a narrow-band mode decomposition to adapt non-stationary power oscillating signal in power systems. For extracting stationary nar-row-band mode function, narrow-band mode decomposition employs the characteristic of narrow-band signal to construct objective function, and uses sifting process of iterative reconstruction to replace traditional optimization algorithm. This paper use narrow-band mode decom- position to extract oscillating components, and then the least square method to be applied to identify the oscillating parameters. The availability of this method is confirmed by the results of test signal and measured data. Contrasting with empirical mod decomposition to draw a conclusion that the adap-tation of this method for extracting the parameters of low-frequency oscillation.
张小店, 王楷夫, 方连航, 梁钰, 杨德友. 窄带模态分解算法在电力系统低频振荡特征参数辨识中的应用研究[J]. 电气技术, 2019, 20(4): 61-66.
Zhang Xiaodian, Wang Kaifu, Fang Lianhang, Liang Yu, Yang Deyou. Applied study of narrow-band mode decomposition for identifying the parameters of low frequency oscillations in power systems. Electrical Engineering, 2019, 20(4): 61-66.
[1] 徐政. “电力系统低频振荡与次同步振荡”专题特约主编寄语[J]. 电工技术学报, 2017, 32(6): 1-2. [2] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10): 2821-2828, T1. [3] 王茂海, 孙元章. 基于DFT的电力系统相量及功率测量新算法[J]. 电力系统自动化, 2005, 29(2): 20-24. [4] Duda, Krzysztof, Magalas, et al. DFT-based estimation of damped oscillation parameters in low-frequency mechanical spectroscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(11): 3608-3618. [5] Korba P, Larsson M, Rehtanz C.Detection of oscillations in power systems using Kalman filtering techniques[C]//Proceedings of IEEE Conference on Control Applications, June 23-25, Turkey, Istanbul: 5p. [6] Hauer J F, Demeure C J.Initial results in Prony analysis of power system response signals[J]. IEEE Transactions on Power Systems: A Publications of the Power Engineering Society, 1990, 5(1): 80-89. [7] 董航, 刘涤尘, 邹江峰. 基于Prony算法的电力系统低频振荡分析[J]. 高电压技术, 2006, 32(6): 97-100. [8] 汪昀, 沈健, 张敏, 等. PMU低频振荡就地辨识研究[J]. 电气技术, 2015, 16(11): 33-35, 39. [9] Khalilinia H, Venkatasubramanian V.Modal analysis of ambient PMU measurements using orthogonal wavelet bases[J]. EEE Transactions on Smart Grid, 2015, 6(6): 2954-2963. [10] Rueda J L, Juarez C A, Erlich I.Wavelet-based analysis of power system low frequency electro- mechanical oscillations[J]. IEEE Trans on Power Systems, 2011, 26(3): 1733-1743. [11] 喻敏, 王斌, 陈绪轩, 等. 同步挤压小波变换在电力系统低频振荡模态参数提取中的应用[J]. 电工技术学报, 2017, 32(6): 14-20. [12] 邓集祥, 欧小高, 姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报, 2009, 24(8): 141-146. [13] Wies R W, Pierre J W, Trundnowski D J.Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems[J]. IEEE Transactions on Power Systems: A Publications of the Power Engineering Society, 2003, 18(1): 167-173. [14] 胡楠. 基于四阶混合平均累计量的TLS-ESPRIT算法在高压直流输电次同步振荡辨识中的应用[J]. 电气工程学报, 2017(12): 33-39, 51. [15] 郝思鹏, 薛禹胜, 张晓明, 等. 基于EEAC理论分析低频振荡[J]. 电力系统自动化, 2009, 33(4): 11-15, 30. [16] M K Jena B K, samantarayS R. A new approach to power system disturbance assessment using Wide-Area postdisturbance records[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1253-1261. [17] 林虹, 陈琳. 基于经验模态分解的电力系统受扰轨迹去噪方法[J]. 电气技术, 2014, 15(8): 11-13. [18] Mcneill S I.Decomposing a signal into short-time narrow-banded modes[J]. Journal of Sound and Vibration, 2016, 373(7): 325-339. [19] Messina A R, Nonlinear V V.Non-stationary analysis of interatrea oscillations via hilbert spectral analysis[J]. IEEE Trans on Power Systems, 2006, 21(3): 1234-1241. [20] 倪以信. 动态电力系统理论与分析[M]. 北京: 清华大学出版社, 2000.