研究与开发
|
内置式一字型永磁同步电动机磁极结构优化设计
肖欣辉1 , 兰志勇1 , 蔡兵兵2
1.湘潭大学,湖南 湘潭 411105; 2.江麓机电集团有限公司,湖南 湘潭 411105
Optimization of pole structure of interior “—” type permanent magnet synchronous motor
XIAO Xinhui1 , LAN Zhiyong1 , CAI Bingbing2
1. Xiangtan University, Xiangtan, Hu'nan 411105; 2. Jianglu Electromechanical Group Co., Ltd, Xiangtan, Hu'nan 411105
摘要 本文在12槽10极传统内置式一字型永磁同步电动机基础上,提出一种不等厚梭型偏心永磁体磁极形状。首先以空载气隙磁通密度正弦度及齿槽转矩为优化目标,给出不等厚梭型偏心磁极结构气隙磁通密度解析模型;然后结合内置式永磁同步电动机等效磁路法模型进行推导,编写Matlab程序进行求解计算,利用有限元分析软件进行仿真。计算与仿真结果表明,不等厚梭型偏心磁极结构能有效提高电动机空载气隙磁通密度波形正弦度,同时削弱齿槽转矩。
关键词 :
内置式永磁同步电动机 ,
气隙磁通密度 ,
磁极形状 ,
齿槽转矩
Abstract :This paper presents a shuttle shaped eccentric permanent magnet pole shape with unequal thickness based on a known type of 12 slots and 10 poles of traditional interior “—” type permanent magnet synchronous motor. Firstly, an analytical model of the shuttle-type pole structure with different thickness is derived by taking sinusoidal degree of the no-load air-gap flux density and cogging torque as the optimization objectives. Then, the equivalent magnetic circuit model of interior permanent magnet synchronous motor is deduced, and the program is written to solve the calculation in Matlab. The finite element analysis software is used for simulation. The calculation and simulation results show that the structure of the shuttle eccentric pole with different thickness can effectively improve the sinusoidal degree of the no-load air gap magnetic density waveform while weakening the cogging torque.
Key words :
interior permanent magnet synchronous motor
air-gap magnetic density
pole shape
cogging torque
收稿日期: 2021-04-03
基金资助: 国家自然科学基金(51507148); 风力发电机组及控制湖南省重点实验室开放研究基金(2016FLFDYB02)
作者简介 : 肖欣辉(1991—),男,湖南省娄底人,硕士研究生,研究方向为永磁同步电机设计。
引用本文:
肖欣辉, 兰志勇, 蔡兵兵. 内置式一字型永磁同步电动机磁极结构优化设计[J]. 电气技术, 2021, 22(11): 7-11.
XIAO Xinhui, LAN Zhiyong, CAI Bingbing. Optimization of pole structure of interior “—” type permanent magnet synchronous motor. Electrical Engineering, 2021, 22(11): 7-11.
链接本文:
http://dqjs.cesmedia.cn/CN/Y2021/V22/I11/7
[1] 唐任远. 现代永磁电机理论与设计[M]. 北京: 机械工业出版社, 1997. [2] 兰志勇, 杨向宇, 王芳媛, 等. Taguchi方法在内嵌式正弦波永磁同步电机优化设计中的应用[J]. 电工技术学报, 2011, 26(12): 37-42. [3] 王凯, 孙海阳, 张露锋, 等. 永磁同步电机转子磁极优化技术综述[J]. 中国电机工程学报, 2017, 37(24): 7304-7317. [4] ZHENG P, LIN Z, SUI Y.Research on combined pole for interior permanent-magnet machine[C]//IEEE Inter-national Magnetics Conference, Beijing, 2015. [5] DUAN Shiying, ZHOU Libing, WANG Jin.Flux weakening mechanism of interior permanent magnet synchronous machines with segmented permanent magnets[J]. IEEE Transactions on Applied Super-conductivity, 2014, 24(3): 0500105. [6] ASHABANI M, MOHAMED Y A I. Multiobjective shape optimization of segmented pole permanent-magnet synchronous machines with improved torque characteristics[J]. IEEE Transactions on Magnetics, 2011, 47(4): 795-804. [7] DUTTA R, SAYEEF S, RAHMAN M F.Cogging torque analysis of a segmented interior permanent magnet machine[C]//IEEE International Electric Machines & Drives Conference, Antalya, 2007: 781-786. [8] PANG Y, ZHU Z Q, FENG Z J.Cogging torque in costeffective surface-mounted permanent-magnet machines[J]. IEEE Transactions on Magnetics, 2011, 47(9): 2269-2276. [9] 焦石, 兰志勇, 王琳. 基于解析法的表贴式永磁同步电动机电磁场与齿槽转矩的分析[J]. 电气技术, 2019, 20(4): 7-11. [10] 林传霖, 林珍. 永磁电动机结构参数对齿槽转矩的影响综述[J]. 电气技术, 2018, 19(2): 6-10, 15. [11] 裴云庆, 杨向宇, 程小华, 等. 一种新型转子结构的内置永磁同步电机优化设计[J]. 微电机, 2018, 51(12): 1-5. [12] 阮博, 谷爱昱, 刘海, 等. 基于磁极分段优化的内置永磁同步电机齿槽转矩削弱方法[J]. 电机与控制应用, 2019, 46(7): 20-25. [13] KIM K C, LIM S B, KOO D H.The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3485-3487. [14] 诸德宏, 简耀, 李明达. 永磁同步电机转子结构优化设计[J]. 微特电机, 2019, 47(8): 19-23. [15] 胡鹏飞, 王东, 靳栓宝, 等. 偏心磁极永磁电机气隙磁场正弦优化模型[J]. 电工技术学报, 2019, 34(18): 3759-3768. [16] 于占洋, 李岩, 井永腾, 等. 基于混合磁场解析法的磁极偏心型表贴式永磁同步电机空载特性分析[J].电工技术学报, 2020, 35(18): 3811-3820. [17] 司萌, 杨向宇, 赵世伟, 等. 采用拼接式转子的内置永磁同步电动机的优化设计[J]. 电机与控制学报, 2017, 21(8): 62-71.
[1]
焦石, 兰志勇, 王琳. 基于解析法的表贴式永磁同步电动机电磁场与齿槽转矩的分析 [J]. 电气技术, 2019, 20(4): 7-11.
[2]
吴雅琳, 林珍, 林晨炯. 无刷直流电动机结构参数优化设计综述 [J]. 电气技术, 2019, 20(11): 1-5.
[3]
林传霖, 林珍. 非均匀气隙对永磁同步电动机弱磁能力的影响 [J]. 电气技术, 2018, 19(3): 65-69.
[4]
林传霖, 林珍. 永磁电动机结构参数对齿槽转矩的影响综述 [J]. 电气技术, 2018, 19(2): 6-10.
[5]
安忠良, 李国丽, 周挺. 内置式永磁发电机隔磁磁桥形状对齿槽转矩的影响 [J]. 电气技术, 2014, 15(04): 1-4.
[6]
石有计. 削弱磁通反向式电机齿槽转矩的有效方法 [J]. 电气技术, 2013, 14(09): 69-72.