Abstract:Wireless power transmission technology is the emerging power transfer mode and has wide applied prospects. Currently, inductive coupling power transmission (ICPT) and resonant coupling wireless power transmission have been received extensive attention. Based on electromagnetic induction principle, low frequency, low transmission distance and high efficiency are the characteristic of ICPT. On the other hand, transfer power in middle range distance with high efficiency is achieved by resonant coupling method. Moreover, spatial location and obstructions is not influenced the resonant coupling method, but its frequency is in MHz range. In this paper, the difference between these two wireless power transmission technologies in principle models and applications is compared and the key problems of the technologies is analyzed, which can supply the references for the design and application of these two wireless power transmission.
[1] Tesla N. Apparatus for transmission electrical energy: U. S. Patent, 1, 119, 732[P]. 1914. [2] Fernández C, García R, Prieto R, et al. Overview of different alternatives for the contact-less transmission of energy[C]//Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society, 10, 2002: 1318-1323. [3] Green A W, Boys J T. 10kHz inductively coupled power transfer-concept and control[C]//Proceedings of the 5th International Conference on Power Electronics and Variable-Speed Drives, 10, 1994: 694-699. [4] Elliott G J, Boys J T, Green A W. Magnetically coupled systems for power transfer to electric vehicles[C]//Pro- ceedings of the International Conference on Power Electronics and Drive Systems, 2, 1995: 797-801. [5] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science (New York, N.Y.), 2007, 317(5834): 83-86. [6] Soljačić M. Wireless energy transfer can potentially recharge laptops, cell phones without cords[M]. San Francisco: Massachusetts Institute of Technology, 2006. [7] 周剑英, 戴密特, 郝寅雷, 等. 圆碟中回音壁模式的耦合条件[J]. 光子学报, 2009, 38(2): 264-267. [8] Hamam R E, Karalis A, Joannopoulos J. Efficient weakly-radiative wireless energy transfer: An EIT-like approach[J]. Annals of Physics, 2009, 324(8): 1783- 1795. [9] Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1): 34-48. [10] Ho S L, Wang Junhua, Fu Wn, et al. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1522-1525. [11] Wang Junhua, Ho S L, Fu Wn, et al. A comparative study between witricity and traditional inductive coupling in wireless energy transmission[C]//Electromagnetic Field Computation (CEFC), 2010 14th Biennial IEEE Conference on, 2010: 1-1. [12] Chwei-Sen W, Stielau O H, Covic G A. Load models and their application in the design of loosely coupled inductive power transfer systems[C]//Proceedings of the International Conference on Power System Technology, 12, 2000: 1053-1058. [13] Hirai J, Tae-Woong K, Kawamura A. Wireless transmission of power and information and information for cableless linear motor drive[J]. Power Electronics, IEEE Transactions on, 2000, 15(1): 21-27. [14] Esser A. Contactless charging and communication system for electric vehicles[C]//Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, 10, 1993: 1021-1028 vol.2. [15] Li Hl, Hu Ap, Covic G A, et al. Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters, 2009, 45(1): 76-U25. [16] 夏晨阳. 感应耦合电能传输系统能效特性的分析与优化研究[D]. 重庆: 重庆大学, 2010. [17] 孙跃, 夏晨阳, 赵志斌, 等. 电压型ICPT系统功率传输特性的分析与优化[J]. 电工电能新技术, 2011, 30(2): 9-12, 25. [18] 孙跃, 夏晨阳, 戴欣, 等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报, 2010, 30(33): 44-50. [19] 赵志斌, 孙跃, 翟渊, 等. 电压型CPT系统动态负载恒压输出研究[J]. 华中科技大学学报(自然科学版), 2011, 39(9): 66-71. [20] 孙跃, 王智慧, 戴欣, 等. 非接触电能传输系统的频率稳定性研究[J]. 电工技术学报, 2005, 20(11): 56-59. [21] 武瑛, 严陆光, 徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报, 2004, 24(5): 63-66. [22] Stewart W. The power to set you free[J]. Science, 2007, 317(5834): 55-56. [23] Sample A P, Meyer D A, Smith J R. Analysis, experi- mental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554. [24] Kiani M, Uei-Ming J, Ghovanloo M. Design and optimization of a 3-coil inductive Link for efficient wireless power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 5(6): 579-591. [25] 野泽哲生. 蓬田宏树, 林咏. 伟大的电能无线传输技术[J]. 电子设计应用, 2007(6): 42-54. [26] Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching[C]//Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 7, 2010: 2011-2016. [27] 傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. [28] 谭林林, 黄学良, 黄辉, 等. 基于频率控制的磁耦合共振式无线电力传输系统传输效率优化控制[J]. 中国科学: 技术科学, 2011, 41(7): 913-919. [29] Kim N Y, Kim K Y, Kim C W. Automated frequency tracking system for efficient mid-range magnetic resonance wireless power transfer[J]. Microwave Opt Technol Lett, 2012, 54(6): 1423-1426. [30] Soljačić M, Rafif E H, Karalis A, et al. Coupled-mode theory for general free-space resonant scattering of waves[J]. Physical Review a, 2007, 75(5): 1-5. [31] Yu Chunlai, Lu R, Mao Yinhua, et al. Research on the model of Magnetic-Resonance based wireless energy transfer system[C]//2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 9, 2009: 374-378. [32] Cheon S, Yong-Hae K, Kang S Y, et al. Circuit-Model- Based analysis of a wireless Energy-Transfer system via coupled magnetic resonances[J]. Industrial Electronics, IEEE Transactions on, 2011, 58(7): 2906-2914.