技术与应用
|
低压配电系统多层级网络选择性协调保护机制技术
苏尚流1 , 缪希仁1 , 吴立敏2
1. 福州大学电气工程与自动化学院,福州 350116; 2. 嘉兴供电公司,浙江 嘉兴 314400
Mechanism Technology of Coordinated Selective Protection in a Multi-level Low Voltage Distribution System
Su Shangliu1 , Miao Xiren1 , Wu Limin2
1. College of Electrical Engineering and Automation Fuzhou University ,Fuzhou 350116; 2. Power Supply Company in Jiaxing, Jiaxing, Zhejiang 314400
摘要 针对现阶段低压系统短路故障选择性保护的局限性,分析短路故障早期检测及其峰值预测在选择性保护的重要意义,提出低压系统多层级网络全范围选择性协调保护机制技术,阐述实现低压系统多层级网络选择性协调保护的关键点。通过仿真分析,探讨了多层级网络中各个节点与中控CPU的协调保护机制及其可行性,并提出采用高速晶振同步采样和基于光纤信道的高速SPI通信技术解决多层级网络多节点同步采样误差问题和多节点与中控CPU高速通信问题。
关键词 :
低压系统 ,
多层级选择性保护 ,
早期检测 ,
同步采样 ,
高速通信
Abstract :Considering the limitations of short-circuit selective protection in low-voltage system, a technology of protective and coordinated mechanism in a multi-level low voltage distribution system is propound ,after analyzing the significance of early detection and peak prediction for short-circuit current in selective protection, key techniques to realize above technology are expound as well. By simulating and analyzing, the specific protection mechanism, in which multi-level network nodes and center control CPU is coordinated, and feasibility are discussed. To solve sampling synchronous error with many nodes in multi-level network and the problem of high speed communication of center control CPU, sampling synchronous using high speed external crystal and SPI communication technology which is based on optical fiber are proposed.
Key words :
low voltage system
selective protection in multi-level network
early detection
sampling synchronous
high speed communication
出版日期: 2016-01-13
基金资助: 国家自然科学基金资助项目(51377023)
作者简介 : 苏尚流(1990-),男,福建省泉州晋江市人。在读硕士研究生,主要研究方向为智能电器及在线监测技术。
引用本文:
苏尚流, 缪希仁, 吴立敏. 低压配电系统多层级网络选择性协调保护机制技术[J]. 电气技术, 2016, 17(1): 81-86.
Su Shangliu, Miao Xiren, Wu Limin. Mechanism Technology of Coordinated Selective Protection in a Multi-level Low Voltage Distribution System. Electrical Engineering, 2016, 17(1): 81-86.
链接本文:
http://dqjs.cesmedia.cn/CN/Y2016/V17/I1/81
[1] 王家林, 夏立, 吴正国, 等. 船舶电力系统智能保护关键技术探讨[J]. 电力系统及其自动化学报, 2012, 24(4): 106-110. [2] 胡亮灯, 叶志浩, 方明, 等. 舰船综合电力系统智能保护方法研究[J]. 电力系统保护与控制, 2011, 39(4): 94-99, 104. [3] 陈德桂. 智能电网与低压电器智能化的发展[J]. 低压电器, 2010, 5(5): 1-6, 48. [4] Draft IEC/TR 61912-2, Ed.1.0: “Low-voltage switch- gear and controlgear-overcurrent protective devices- Selectivity under over-current conditions, International Electrotechnical Commission”, pp.10. March 23, 2007. [5] 缪希仁. 低压配电系统全范围选择性协调保护技术[J]. 低压电器, 2014, 9(9): 19-22. [6] 缪希仁, 吴晓梅. 低压系统多层级短路电流早期检测与预测[J]. 电工技术学报, 2014, 29(11): 177- 183. [7] 何瑞华. 我国新一代低压电器发展中值得探讨的几个问题[C]//2014中国电工技术学会学术年会论文集, 中国电工技术学会, 2014. [8] 史丽萍, 温树峰, 黄延庆. 基于CAN网通信的选择性短路保护的研究[J]. 电力系统保护与控制, 2011, 39(8): 139-142. [9] Larsen E. A new approach to low-voltage circuit breaker short-circuit selective coordination[C]// Industrial and Commercial Power Systems Technical Conference, 2008: 1-7. [10] 陈丽安, 张培铭, 缪希仁. 基于小波变换的低压系统短路故障的早期预测[J]. 电工技术学报, 2003, 18(2): 91-94. [11] 陈丽安. 保护电器的短路故障早期检测及实现的研究[D]. 福州: 福州大学, 2004. [12] 陈丽安, 张培铭. 基于形态小波的低压系统短路故障早期检测[J]. 中国电机工程学报, 2005, 25(10): 24-28, 88. [13] 陈丽安, 张培铭. 基于小波变换的短路故障早期检测门限值的研究[J]. 电工技术学报, 2005, 20(3): 64-69. [14] 陈丽安, 张培铭. 形态小波在低压系统短路故障早期检测中的DSP实现[J]. 电工电能新技术, 2005, 24(1): 31-34, 52. [15] 吴晓梅, 缪希仁. 短路故障早期检测及其趋势预测研究[D]. 福州: 福州大学, 2015. [16] 张承学, 龚庆武, 胡志坚, 等. 基于GPS同步采样装置的研制及其应用[J]. 电力系统自动化, 2000, 24(10): 49-52. [17] 杨美刚, 李小文. SPI接口及其在数据交换中的应用[J]. 通信技术, 2007, 40(11): 385-387. [18] 吴黎辉, 王维, 徐金榜. 基于SPI的光纤通讯在有源滤波信号检测中的应用[J]. 电工技术, 2006(12): 44-45. [19] 谢黎, 黄国方, 沈健. 数字化变电站中高精度同步采样时钟的设计[J]. 电力系统自动化, 2009, 33(1): 61-65.
[1]
杨孟超, 王鹏, 卢慧强. 浅谈智能低压控制系统 [J]. 电气技术, 2019, 20(10): 89-91.
[2]
严结实, 王文静. 基于三相量实现正弦信号非同步采样的精确频率测量 [J]. 电气技术, 2017, 18(10): 79-84.
[3]
产焰萍, 缪希仁. 低压配电系统短路故障早期检测的信号滤波方法研究 [J]. 电气技术, 2016, 17(8): 9-13.
[4]
吴巧玲, 缪希仁, 许火炬, 郭谋发. 相控开关的早期故障检测及过零预测方法研究 [J]. 电气技术, 2016, 17(7): 24-30.
[5]
王霄翔, 程立, 熊慕文. 一种非同步采样下的微机测控装置直流滤波方法 [J]. 电气技术, 2016, 17(6): 142-145.
[6]
张丽萍, 蔡传庆, 缪希仁. 智能配电系统多层级选择性保护技术 [J]. 电气技术, 2016, 17(11): 96-100.
[7]
吴骞. 基于北斗的智能化光纤差动保护装置 [J]. 电气技术, 2015, 16(9): 64-67.