研究与开发
|
考虑负荷可调节度的年综合峰谷电价模型研究
朱少林1 , 郑仲海1 , 高敏捷1 , 温步瀛2
1. 国网福建省电力有限公司,福州 350003; 2. 福州大学电气工程与自动化学院,福州 350108
Annual Comprehensive Peak-valley Price Model Considering the Load Adjustable Degree
Zhu Shaolin1 , Zheng Zhonghai1 , Gao Minjie1 , Wen Buying2
1. State Grid Fujian Electric Power Company, Fuzhou 350003; 2. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108
摘要 目前涉及峰谷电价的文献对全年峰谷电价的综合模型缺乏研究,且传统的电价模型仍存在一些不合理的地方,需要继续完善和改进。本文考虑一年4个季度的用电差异性,按各个季度对供电压力的大小来取其权值,提出运用加权二范数对全年的峰谷时段进行划分,从而得到全年综合时段划分方案。提出地区负荷用电可调节度的概念,并将其引入模型作为新的约束条件,提出采用变权重加权法进行多目标优化,建立全年的峰谷电价优化模型。结合某地区实例分析,证明本文模型比已实施的峰谷电价方案具有更好的削峰填谷效果。
关键词 :
峰谷电价 ,
用电差异性 ,
加权二范数函数 ,
负荷可调节度 ,
变权重加权法
Abstract :Currently, the literature on peak-valley price is lack of research on the annual comprehensive model of TOU. In consideration of the differences between the four quarters of electricity service condition, according to the electricity amount of each quarter to take the weight, using a weighted two-norm function method to divided peak-valley time periods of the year. This paper considers regional electricity load adjustable, taking it as a new constraints of the new mode. The year’s peak-valley price model uses the adaptive variable weight weighting method to solve the multi-objective problem.Through the study of the cases of a certain area to prove that the model has better peak effect than the peak-valley price scheme has been implemented.
Key words :
peak-valley price
the difference of electricity
weighted two-norm function
load adjustable degree
variable-weight weighting method
出版日期: 2017-07-20
作者简介 : 朱少林(1979-),男,福建泰宁人,硕士,高级工程师,主要研究方向为电力市场。
引用本文:
朱少林, 郑仲海, 高敏捷, 温步瀛. 考虑负荷可调节度的年综合峰谷电价模型研究[J]. 电气技术, 2017, 18(7): 28-32.
Zhu Shaolin, Zheng Zhonghai, Gao Minjie, Wen Buying. Annual Comprehensive Peak-valley Price Model Considering the Load Adjustable Degree. Electrical Engineering, 2017, 18(7): 28-32.
链接本文:
http://dqjs.cesmedia.cn/CN/Y2017/V18/I7/28
[1] 李昌. 基于分时电价的办公建筑中央空调最优起动时间计算[J]. 电气技术, 2015, 16(8): 34-39. [2] 赵娟, 谭忠富, 李强. 我国峰谷分时电价的状况分析[J]. 现代电力, 2005, 22(2): 82-85. [3] 翁桂萍, 潘夏, 邵振国. 计及峰谷电价和启发式运行策略的风光储联合发电用户容量优化[J]. 电气技术, 2016, 17(5): 1-6. [4] 别朝红, 李更丰, 谢海鹏. 计及负荷与储能装置协调优化的微网可靠性评估[J]. 电工技术学报, 2014(2): 64-73. [5] Roos J G, Lane I E. Industrial power demand response analysis for one-part real-time pricing[J]. IEEE Trans on Power Systems, 1998, 13(1): 159-1641. [6] Kirschen D S. Demand-side view of electricity markets[J]. IEEE Transactions on Power Systems, 2003, 18(2): 520-527. [7] 茆美琴, 金鹏, 张榴晨, 等. 工业用光伏微网运行策略优化与经济性分析[J]. 电工技术学报, 2014, 29(2): 35-45. [8] 丁宁, 吴军基, 邹云. 基于DSM的峰谷时段划分及分时电价研究[J]. 电力系统自动化, 2001, 25(23): 9-12, 16. [9] 程瑜, 翟娜娜. 基于用户响应的分时电价时段划分[J]. 电力系统自动化, 2012, 36(9): 42-46, 53. [10] Sheen J N, Chen C S, Wang T Y. Response of large industrial customers to electricity pricing by voluntary time-of-use in Taiwan[J]. IEE Proceedings-Generation, Transmission and Distribution, 1995, 142(2): 157-166. [11] 秦祯芳, 岳顺民, 余贻鑫, 等. 零售端电力市场中的电量电价弹性矩阵[J]. 电力系统自动化, 2004, 28(5): 16-19, 24. [12] 郑成, 田宇, 陈一怀. 基于模糊聚类的峰谷时段划分[J]. 电气技术, 2016, 17(6): 13-17. [13] 郭联哲, 谭忠富, 李晓军. 基于用户响应下的分时电价优化设计模型与方法[J]. 电网技术, 2006, 30(5): 24-28. [14] 项顶, 宋永华, 胡泽春, 等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报, 2013, 33(31): 15-25. [15] 孙近文, 万云飞, 郑培文, 等. 基于需求侧管理的电动汽车有序充放电策略[J]. 电工技术学报, 2014, 29(8): 64-69. [16] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and ellipticoperators[J]. Part II: Off-diagonal Estimates on Spaces of Homogeneous Type. J. Evol. Equ, 2007, 7(2): 265-316. [17] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and ellipticoperators[J]. Part I: General Operator Theory and Weights. Adv. Math, 2007, 212(1): 225-276. [18] 连振洲, 温步瀛, 江岳文. 基于负荷曲线分布特征的峰谷时段划分和修正策略研究[J]. 电网与清洁能源, 2014(7): 15-19.