Abstract:In islanded mode microgrid, circulating current among parallel inverters due to the voltage differences and disproportionate line impedances cannot be neglected. In this paper, the influence of external inductor, local load and line impedance on circulating current is taken into consideration in the equivalent feeder calculation. The equivalent feeder voltage drop is calculated and added to the reference voltage of droop control as voltage compensation. Meanwhile, adaptive virtual complex impedance is adopted to provide quick responses to load change and the mismatch of line impedances, which can reduce the resistant part of line impedance and improve the line impedance proportional accuracy. Simulation results show that the equivalent line impedance calculation method can reflect the variation of grid parameters. The proposed control strategy can suppress the circulating current well and improve the accuracy of power proportional sharing.
张明锐, 王佳莹, 宋柏慧, 韦莉. 基于等效馈线的孤岛微网并联逆变器间环流抑制策略[J]. 电气技术, 2018, 19(7): 1-8.
Zhang Mingrui, Wang Jiaying, Song Baihui, Wei Li. The circulating current suppressing strategy based on equivalent feeder for parallel inverters in islanded microgrid. Electrical Engineering, 2018, 19(7): 1-8.
[1] 方红伟, 陶月, 肖朝霞, 等. 并网逆变器并联系统的鲁棒控制与环流分析[J]. 电工技术学报, 2017, 32(18): 248-258. [2] 凌文青, 祝龙记, 杨盼盼. 逆变器并联系统均流控制策略的研究[J]. 电气技术, 2016, 17(4): 17-19. [3] Zhang Mingrui, Du Zhichao, Lin Xianqi, et al.Contral strategy design and parameter selection for suppressing circulating current among SSTs in parallel[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1602-1609. [4] 林汉平, 吴文宣, 蔡金锭, 等. 储能装置多机系统在离网状态下的环流控制策略[J]. 电气技术, 2015, 16(10): 34-38. [5] 陈丽娟, 王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制, 2016, 44(4): 16-21. [6] Lee C T, Chu C C, Cheng Potai.A new droop control method for the autonomous operation of distributed energy resource interface converters[J]. IEEE Transa- ctions on Power Electronics, 2013, 28(4, SI): 1980-1993. [7] 徐玉琴, 马焕均. 基于改进下垂控制的逆变器并联运行技术[J]. 电力系统保护与控制, 2015, 43(7): 103-107. [8] Guerrero J M, De Vicuna L G, Matas J, et al. Output impendance design of parallel-connected UPS inverters with wireless load-sharing control[J]. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1126-1135. [9] Zhu Yixin, Zhuo Fang, Wang Feng, et al.A virtual impedance optimization method for reactive power sharing in networked microgrid[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2890-2904. [10] Guan Yajuan, Guerrero J M, Zhao Xin, et al.A new way of controlling Parallel-Connected inverters by using Synchronous-Reference-Frame virtual impedance Loop-Part I: control principle[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4576-4593. [11] Zhang Huaguang, Kim S, Sun Qiuye, et al.Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1749-1761. [12] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-107. [13] Zhang Chi, Guerrero J M, Vasquez J C, et al.Control architecture for Parallel-Connected inverters in uninterruptible power systems[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5176-5188. [14] Li Yong, Liu Qianyi, Hu Sijia, et al.A virtual impedance comprehensive control strategy for the controllably inductive power filtering system[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 920-926. [15] Wu Xiangyu, Shen Chen, Iravani R.Feasible range and optimal value of the virtual impedance for Droop- Based control of microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1242-1251. [16] Huang Aq, Crow M L, Heydt G T, et al.The future renewable electric energy delivery and management (FREEDM) system: the energy Internet[J]. Pro- ceedings of the IEEE, 2011, 99(1): 133-148. [17] Yu X W, She X, Zhou X H, et al.Power management for DC microgrid enabled by solid-state transformer[J]. IEEE Transactions on Smart Grid, 2013, 5(2): 954-965. [18] 张明锐, 杜志超, 王少波. 微网中下垂控制策略及参数选择研究[J]. 电工技术学报, 2014, 29(2): 136-144.