研究与开发
|
电磁云计算的多目标任务调度算法研究
金亮, 王京涛, 刘向贞, 冯伟
天津工业大学天津电工电能新技术重点实验室,天津 300387
Research on multi-objective task scheduling algorithm for electromagnetic cloud computing
Jin Liang, Wang Jingtao, Liu Xiangzhen, Feng Wei
Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tiangong University, Tianjin 300387
摘要 随着云计算在高性能计算领域的发展,大规模电磁有限元以及多样本计算逐渐采用云计算完成,因此云计算任务调度尤其是多目标任务调度成为一个需解决的重要问题。多目标任务调度算法优化了任务最大计算完成时间、机器总负荷和机器最大负荷3个目标。本文针对电磁有限元单样本计算不可分割的特性,提出多种群混合算法。采用多指标加权灰靶决策模型从Pareto解集当中选择最满意的云平台任务调度方案。在云平台上运行3个有限元计算案例,获得计算时间和资源消耗最优的CPU核心数和内存配置。通过测试基准和实际的案例,验证了算法的可行性和有效性,在云平台上实现了有限元高效计算和资源的充分利用。
关键词 :
云计算 ,
有限元方法 ,
多目标进化算法 ,
任务调度 ,
多指标加权灰靶决策模型
Abstract :With the development of cloud computing in the field of high-performance computing, large-scale electromagnetic finite element and multi-sample computing are gradually completed by cloud computing. Therefore, cloud computing task scheduling, especially multi-target task scheduling, has become an important issue to be solved. The multi-objective task scheduling algorithm optimizes the three objectives of maximum computing completion time, total machine load and maximum machine load. In this paper, Aiming at the indivisibility of electromagnetic finite element single sample computation, a multi-group hybrid algorithm is proposed. Making use of multi-attribute decision model based on weighted grey target to select the most satisfied cloud platform task scheduling solution. This paper obtains the optimal CPU core number and memory allocation by running three cases of finite element calculation on the cloud platform. The feasibility and effectiveness of the algorithm are verified by test benchmarks and actual cases. The finite element efficient calculation and the full utilization of resources are realized on the cloud platform.
Key words :
cloud computing
finite element method
multi-objective evolutionary algorithm
task scheduling
weighted multi-attribute grey target decision model
收稿日期: 2019-10-29
出版日期: 2020-04-16
基金资助: 国家自然科学基金项目(51577132)
作者简介 : 金 亮(1982-),男,博士,副教授,研究方向为工程电磁场与磁技术、电磁场云计算和电磁无损检测等。
引用本文:
金亮, 王京涛, 刘向贞, 冯伟. 电磁云计算的多目标任务调度算法研究[J]. 电气技术, 2020, 21(4): 44-49.
Jin Liang, Wang Jingtao, Liu Xiangzhen, Feng Wei. Research on multi-objective task scheduling algorithm for electromagnetic cloud computing. Electrical Engineering, 2020, 21(4): 44-49.
链接本文:
http://dqjs.cesmedia.cn/CN/Y2020/V21/I4/44
[1] 张文, 郑晓钦, 吴新振. 多相感应电机三维电磁分析与损耗计算[J]. 电工技术学报, 2018, 33(增刊2): 331-337. [2] 梁振光, 唐任远. 大型变压器三维瞬态涡流场场路耦合模型[J]. 电工技术学报, 2003, 18(5): 17-22. [3] Zhao Yong, Li Chenliang, Li Youfu, et al.Efficient task scheduling for many task computing with resource attribute selection[J]. China Communications, 2014, 11(12): 125-140. [4] Wang Weijie, Xu Ran, Li Hanyu, et al.Massively parallel simulation of large-scale electromagnetic problems using one high-performance computing scheme and domain decomposition method[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5): 1523-1531. [5] Wolski R, Brevik J.Using parametric models to represent private cloud workloads[J]. IEEE Transa- ctions on Services Computing, 2014, 7(4): 714-725. [6] 王德文, 刘杨. 一种电力云数据中心的任务调度策略[J]. 电力系统自动化, 2014, 38(8): 61-66, 97. [7] 刘巍, 黄曌, 李鹏, 等. 面向智能配电网的大数据统一支撑平台体系与构架[J]. 电工技术学报, 2014, 29(增刊1): 486-491. [8] Lin Xiangyu, Wu CQ.On scientific workflow scheduling in clouds under budget constraint[C]//2013 42nd Annual International Conference on Parallel Processing (ICPP), 2013: 90-99. [9] Luo Xiaochuan, Zhang Song, Litvinov E.Practical design and implementation of cloud computing for power system planning studies[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2301-2311. [10] 张鹏, 李春燕, 张谦. 基于需求响应调度容量上报策略博弈的电网多代理系统调度模式[J]. 电工技术学报, 2017, 32(19): 170-179. [11] 路欣怡, 刘念, 陈征, 等. 电动汽车光伏充电站的多目标优化调度方法[J]. 电工技术学报, 2014, 29(8): 46-56. [12] Mezmaz M, Melab N, Kessaci Y, et al.A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems[J]. Journal of Parallel and Distributed Computing, 2011, 71(11): 1497-1508. [13] 杨柳青, 林舜江, 刘明波. 大电网多目标动态优化调度的解耦算法及并行计算[J]. 电工技术学报, 2016, 31(6): 177-186. [14] Kacem I, Hammadi S, Borne P.Approach by locali- zation and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 1-13. [15] 张国辉, 石杨. 基于改进遗传算法求解柔性作业车间调度问题[J]. 机械科学与技术, 2011, 45(11): 1890-1894. [16] Xia Weijun, Wu Zhiming.An effective hybrid optimi- zation approach for multi-objective flexible job-shop scheduling problems[J]. Computers & Industrial Engin- eering, 2005, 48(2): 409-425.
[1]
于佩瑾, 朱常青, 沈一鸣, 张国斌. 起动条件对永磁电动机退磁状况的影响 [J]. 电气技术, 2019, 20(1): 12-17.
[2]
汪昀, 丁永生, 李自清, 徐友刚. 新型预装式变电站环境监测系统 [J]. 电气技术, 2017, 18(5): 78-81.
[3]
孔维星, 李娟. 汽轮发电机稳定运行时定子端部绕组的应力分析 [J]. 电气技术, 2016, 17(4): 29-34.
[4]
杨跃平,王骁,钱建慧,刘晓芳,徐金灵. 宁海市需求侧智能用电管理系统的设计研究 [J]. 电气技术, 2014, 15(08): 36-39.
[5]
高涛. 基于云计算的配电自动化系统设计 [J]. 电气技术, 2014, 15(07): 103-105.