Application of nonlinear decoupling method based on unscented Kalman filter in thermal power units
WANG Yonggang1, SUN Yumiao1, ZHANG Nannan1, XIAO Ruimin1, ZHANG Mingjian2
1. School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866; 2. State Grid Liaoning Maintenance Company, Shenyang 110003
Abstract:In view of the strong coupling, strong nonlinearity and parameter uncertainty of thermal power units, it is difficult to use conventional control methods to effectively control them. This article first analyzes the influence of the system's nonlinear strength and the system's model parameter uncertainty on the system. On the basis of in-depth understanding of the dynamic characteristics of the system, the system parameters are estimated by the unscented Kalman filter (UKF) method. The above system is controlled by global linearized control (GLC) strategy. The simulation results show that the UKF method can quickly and effectively estimate the uncertain parameters of this model. In this paper, compared with the feedback linearization control method, the GLC control method could improve the control performance of the system. This model has strong robustness and could provide technical support and theoretical guidance for actual production.
[1] AGÜERO J L, BEROQUI M C, ISSOURIBEHERE F. Grid frequency control. Secondary frequency control tuning taking into account distributed primary frequency control[C]//IEEE PES General Meeting, 2010: 1-8. [2] 王京景, 吴旭, 王正风, 等. 基于多目标模糊优化的抽蓄水火电联合调峰方法[J]. 电气技术, 2019, 20(11): 33-38, 45. [3] ZHOU Wenji, ZHU Bing, FUSS S, et al.Uncertainty modeling of CCS investment strategy in China's power sector[J]. Applied Energy, 2010, 87(7): 2392-2400. [4] WEI L, FANG F.H∞-LQR-based coordinated control for large coal-fired boiler-burbine generation units[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5212-5221. [5] WANG Yinsong, YU Xinghuo.New coordinated control design for thermal-power-generation units[J]. IEEE Transactions on Industrial Electronics, 2010, 57(11): 3848-3856. [6] 卓旭升, 周怀春. 一种火电机组系统非线性控制方法的实用仿真研究[J]. 中国电机工程学报, 2005, 25(20): 94-99. [7] 王志杰, 王广军, 陈红. 基于逆模型的火电机组自适应解耦控制[J]. 中国电机工程学报, 2011, 31(29): 118-123. [8] AFSHAR S, MORRIS K, KHAJEPOUR A.State-of- charge estimation using an EKF-based adaptive observer[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 1907-1923. [9] 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. [10] 孙兴法, 聂子玲, 朱俊杰, 等. 基于低阶串行双扩展卡尔曼滤波的永磁直线同步电机无速度传感器控制策略[J]. 电工技术学报, 2018, 33(12): 2685-2694. [11] LE ROUS J D, STEINBOECK A, KUGI A, et al. An EKF observer to estimate semi-autogenous grinding mill hold-ups[J]. Journal of Process Control, 2017, 51: 27-41. [12] 刘经宇, 方彦军. 基于卡尔曼滤波的汽包水位多传感器信息融合方法研究[J]. 电力自动化设备, 2008, 28(4): 28-31. [13] 陈锐民, 张曦, 张卫东. 基于自适应EKF滤波算法的汽包水位估计方法[J]. 控制工程, 2017, 24(2): 293-296. [14] ASTROM K J, EKLUND K.A simplified non-linear model of a drum boiler-turbine unit[J]. International Journal of Control, 1972, 16(1): 145-169. [15] ASTROM K J, EKLUND K.A simple non-linear drum boiler model[J]. International Journal of Control, 1975, 22(5): 739-740. [16] ASTROM K J, BELL R.Dynamic models for boiler- turbine alternator units: data logs and parameter estimation for a 160MW unit[R]. Lund, Sweden: Lund University, 1987. [17] DU Jingjing, SONG Chunyue, LI Ping.Application of gap metric to model bank determination in multi-linear model approach[J]. Journal of Process Control, 2009, 19(2): 231-240.