Abstract:Power grid equipment and management mode are evolving fast to adapt for the ever-increasing portfolios of renewable energy in power generation. Power grid risk management is facing continuous challenge of new stochastic factors. This paper proposes a mid- and long-term failure rate model of power transmission equipment accounting for multi-dimensional hazard factors. Firstly, the proposed method employs the brain storming to summarize empirical equipment-related hazards factors which are provided by professional equipment management departments. Such a process can be regarded as the hazard factor identification. The summarized hazards factors are classified into various categories with distinct dimension sense. For each category or dimension, an independent failure frequency indicator is defined, which is then weighted to result in the so-called multi-dimensional failure rate (EFR). Case study on risk assessment of the Northwest 750kV tank circuit breakers is conducted to demonstrate a practical application of the proposed method.
马江泓, 马龙涛, 范越. 计及多维隐患因素的输变电设备中长期故障率建模方法[J]. 电气技术, 2023, 24(2): 32-40.
MA Jianghong, MA Longtao, FAN Yue. Mid- and long-term risk assessment of power equipment accounting for multi-dimensional hazard factors. Electrical Engineering, 2023, 24(2): 32-40.
[1] 丁茂生, 孙维佳, 蔡星浦, 等. 电力系统极端事件的风险评估与防范[J]. 中国电力, 2020, 53(1): 32-39, 65. [2] 王申华, 何湘威, 方小方, 等. 基于泛在电力物联网多源信息的电网动态风险评估系统[J]. 中国电力, 2019, 52(12): 10-19. [3] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. [4] 陈剑平, 石恒初, 游昊, 等. 双母线接线主变失灵保护整定风险及防范措施[J]. 电气技术, 2020, 21(6): 127-131. [5] 杨帅, 南东亮, 杨飞, 等. 基于移动运维平台的二次设备风险隐患评价系统[J]. 电气技术, 2020, 21(9): 66-69, 76. [6] 张沛, 田佳鑫, 谢桦. 计及多个风场预测误差的电力系统风险快速计算方法[J]. 电工技术学报, 2021, 36(9): 1876-1887. [7] 谭波, 刘丙财, 陈永德, 等. 基于风险评估的输电设备差异化运维策略[J]. 中国电力, 2016, 49(增刊1): 21-26, 30. [8] 杨才明, 项中明, 谢栋, 等. 多因素驱动架空线路故障率模型[J]. 电力系统保护与控制, 2018, 46(12): 9-15. [9] 鹿鸣明, 王逸飞, 郭创新, 等. 一种基于PHM考虑老化和设备状态的油浸式变压器故障率模型[J]. 电力系统保护与控制, 2014, 42(18): 66-71. [10] ALVEHAG K, SO De R L. A reliability model for distribution systems incorporating seasonal variations in severe weather[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 910-919. [11] ZHOU Y, PAHWA A, YANG S S.Modeling weather- related failures of overhead distribution lines[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1683-1690. [12] MORADKHANI A, RAHIMKHANI M.Determining the pattern of MV overhead line failure rate using Poisson regression[C]//2015 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, Iran, 2015: 143-149. [13] 何剑, 程林, 孙元章, 等. 条件相依的输变电设备短期可靠性模型[J]. 中国电机工程学报, 2009, 29(7): 39-46. [14] 王辉, 郝丽丽, 黄梅, 等. 基于历史故障信息的配电网设备故障概率建模[J]. 电力自动化设备, 2020, 40(3): 76-84. [15] 宋嘉婧, 郭创新, 张金江, 等. 山火条件下的架空输电线路停运概率模型[J]. 电网技术, 2013, 37(1): 100-105. [16] 杨洪朝. 架空输电线路冰冻灾害风险评估系统研究及应用[D]. 长沙: 湖南大学, 2012. [17] CLAVIJO-BLANCO J A, ROSENDO-MACIAS J A. Failure rates in distribution networks: estimation methodology and application[J]. Electric Power Systems Research, 2020, 185: 106398. [18] JAECH A, ZHANG Baosen, OSTENDORF M, et al.Real-time prediction of the duration of distribution system outages[J]. IEEE Transactions on Power Systems, 2019, 34(1): 773-781. [19] MORADKHANI A, HAGHIFAM M R, MOHAMMADZADEH M.Failure rate estimation of overhead electric distribution lines considering data deficiency and population variability[J]. International Transactions on Electrical Energy Systems, 2015, 25(8): 1452-1465. [20] WANG Yue, CHEN Lu, YAO Meng, et al.Evaluating weather influences on transmission line failure rate based on scarce fault records via a bi-layer clustering technique[J]. IET Generation, Transmission & Distri- bution, 2019, 13(23): 5305-5312.