|
|
Comparison Analysis of the Performance on the Curve Fitting of BP Neural Network and EKF Neural Network |
Zhang Bin,Chen Xiaoning,Zhao Jinlong,Huang Liyang |
PLA University of Science and Technology, nanjing 210007 |
|
|
Abstract This paper firstly describes the underlying meaning of curve fitting, then discuss the principle of BP neural network and EKF neural network. The paper studies the curve fitting performance of BP neural network and EKF neural network, through Matlab simulation results, the EKF algorithm can better identifies the system and has a higher convergence.
|
Published: 04 November 2014
|
|
|
|
Cite this article: |
Zhang Bin,Chen Xiaoning,Zhao Jinlong等. Comparison Analysis of the Performance on the Curve Fitting of BP Neural Network and EKF Neural Network[J]. Electrical Engineering, 2014, 15(07): 15-17.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2014/V15/I07/15
|
[1] 阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000. [2] 尹念东. BP神经网络的应用设计[J]. 信息技术, 2003, 27(6): 18-20. [3] 张永怀, 刘君华. 采用BP神经网络及其改进算法改善传感器特性[J]. 传感技术学报, 2002(3): 185-188. [4] 飞思科技产品研发中心.Matlab6.5辅助神经网络分析与设计. 北京: 电子工业出版社, 2003. [5] 周正民, 赵立雄. 神经网络在实验数据拟合中的应用[J]. 太原重型机械学院学报, 2006, 21(2): 165-168. [6] 杨莉, 周志富. BP神经网络在GPS高程异常拟合中的应用[J]. 测绘工程, 2010, 19(4): 12-15. [7] 薛毅. 数值分析与实验[J]. 北京: 北京工业大学出版社, 2005: 146-149. [8] 王志贤. 最优状态估计与系统辨识[M]. 西安: 西北工业大学出版社, 2004: 23-30. [9] SIMON D. Training radial basis neural networks with the extend Kalman filter[J]. Neurocomputing, 2002, 48: 455-475. |
|
|
|