|
|
Identification of Abnormal Power Load Data Based on Two Times Clustering |
Wang Ke1, Wang Tianxiu2 |
1. School of Electrical Engineering, Southeast University, Nanjing 210096; 2. Huaian Power Supply Company, Huaian, Jiangsu 223001 |
|
|
Abstract Historical load data is the basis of load forecasting of power system, the abnormal historical data affect the accuracy and effectiveness of load forecasting, hence, it is necessary to identify the abnormal load data. This paper takes a node load data for research object, and presents a method for abnormal load data identification based on two times clustering algorithm, using fuzzy clustering algorithm combining with validity index to cluster the load curve for the first time; using the clustering results combined with neural network to cluster the load curve for the second time and extract daily load characteristic curve; according to the similarity and smoothness of load curve to identify the abnormal load data. The results of bad data identification in examples indicate that the proposed method is feasible and effective. The example analysis result shows that this method is effective.
|
Published: 22 December 2014
|
|
|
|
[1] 莫维仁, 张伯明, 孙宏斌, 等. 扩展短期负荷预测方法的应用[J]. 电网技术, 2003, 27(5): 6-9. [2] 康重庆, 夏清, 相年德. 灰色系统参数估计与不良数据辨识[J]. 清华大学学报(自然科学版), 1997, 37(4): 72-75. [3] 蒋雯倩, 李欣然, 钱军. 改进FCM算法及其在电力负荷坏数据处理的应用[J]. 电力系统及其自动化学报, 2011, 23(5): 1-5. [4] 刘辉舟, 周开乐, 胡小建. 基于模糊负荷聚类的不良负荷数据辨识与修正[J]. 中国电力, 2013, 46(10): 29-34. [5] 刘莉, 翟登辉, 姜新丽. 电力系统不良数据检测与辨识方法的现状与发展[J]. 电力系统保护与控制, 2010, 38(5): 143-147, 152. [6] 吴俊. 基于神经网络的电力负荷数据清洗模型研究[D]. 大连: 大连理工大学, 2010. [7] 曾博, 张建华, 丁蓝, 等. 改进自适应模糊C均值算法在负荷特性分类的应用[J]. 电力系统自动化, 2011, 35(12): 42-46. [8] 朱文婕. 模糊聚类有效性指标研究[D]. 合肥: 合肥工业大学, 2009. [9] 刘莉, 王刚, 翟登辉. k-means聚类算法在负荷曲线分类中的应用[J]. 电力系统保护与控制, 2011, 39(23): 65-68, 73. |
|
|
|