|
|
Research on Load Forecast Method Introducing Load-temperature-gradient |
Cheng Zhuo |
Shenzhen Power Supply Co., Ltd, Shenzhen, Guangdong 518000 |
|
|
Abstract Through analying a large number of daily maximum temperature and daily maximum load, separating the temperature sensitive load from the basic load, and finding a parameter, which named load-temperature-gradient to express the relationship of the temperature sensitive load and temperature. Forecasting the load-temperature-gradient by historical data, A new load forecast method, including load-temperature-gradient, is put forward. This method can decrease the error caused in the situation that load increases within short time under extreme weather, which can’t reflect the real power demand situation.
|
Published: 28 October 2015
|
|
|
|
[1] 马瑞, 周谢, 彭舟, 等. 考虑气温因素的负荷特性统计指标关联特征数据挖掘[J]. 中国电机工程学报, 2015, 35(1): 43-51. [2] 朱振伟. 气象因素对电网负荷特性影响的研究[D]. 杭州: 浙江大学, 2008. [3] 周谢. 电力负荷特性指标及其内在关联性分析[D]. 长沙: 长沙理工大学, 2013. [4] 雷鸣, 朱昊, 高山. 温度变化对小区居民负荷特性的影响[C]. 电力系统及其自动化专业第二十一届学术年会论文集, 2005: 1487-1490. [5] 陆建宇, 王亮, 王强, 等. 华东电网气象负荷特性分析[J]. 华东电力, 2006, 34(11): 38-42. [6] 王颖. 温度对天津电网负荷的影响[J]. 天津电力, 2006, 1: 7-9. [7] 张海东, 孙照渤, 郑艳, 等. 温度变化对南京城市电力负荷的影响[J]. 大气科学学报, 2009, 32(4): 536-542. [8] 陈健, 刘明波, 樊亚亮, 等. 广州电网负荷特性分析[J]. 电力系统及其自动化学报, 2009, 21(6): 78-83. [9] 於冬雪, 李扬, 周毅波. 南宁地区负荷特性及温度相关性分析[J]. 电力需求侧管理, 2013(5): 6-10. [10] 原媛. 电力负荷特性分析及中长期负荷预测方法研究[D]. 上海: 上海交通大学, 2008. [11] 谢家安. 基于体感温度的电力系统负荷分类及负荷预测[J]. 电网与清洁能源, 2012, 28(8): 24-28. [12] 朱陶业, 李应求, 张颖, 等. 提高时间序列气象适应性的短期电力负荷预测算法[J]. 中国电机工程学报, 2006, 26(23): 14-19. [13] De Felice M, Alessandri A, Ruti PM. Electricity demand forecasting over Italy: Potential benefits using numerical weather prediction models[J]. Electric Power Systems Research, 2013, 104: 71-79. [14] Dotzauer E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73(3/4): 277-284. [15] Roldán-Blay C, Escrivá-Escrivá G, Álvarez-Bel C, et al. Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model[J]. Energy and Buildings, 2013, 60: 38-46. [16] 张凯锋, 藤贤亮, 王颖. 基于趋势分解的电力系统区域负荷建模与预测方法[C]. Proeeedings of the 31st Chinese ControI Conlference, Hefei, China, 2012. |
|
|
|