|
|
Influence of L-Shape Part of GIS Enclosure on Electromagnetic Propagation Characteristics and Equivalent Circuit Model |
Cao Shuyun, Jiao Chongqing |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University, Beijing 102206 |
|
|
Abstract Field distribution of electromagnetic wave propagating in a gas insulated switchgear (GIS) can be distorted locally at the discontinuous/abrupt positions like elbows, spacers and bushings. The effect of such distortion is usually regarded as a lumped circuit element inserted into the transmission line model. For L-type elbow of GIS pipe, both π-type and T-type equivalent circuits consisting of compensation capacitance and compensation inductance are investigated in this paper. Based on the two-port network parameter obtained by electromagnetic simulation of the L-shaped pipe, the formulae of both the compensation capacitance and inductance are derived by using transmission line theory. For a 1100kV GIS dimensions, the capacitance is about 15~32pF and the inductance is about 0.1~0.2μH when the T-type circuit adopted, and the capacitance is about 15~40pF and the inductance is about 0.08~0.23μH when the π-type circuit adopted. Both the capacitance and the inductance are changing with the frequency. A circuit including a terminal load on one end of the L-shape pipe and a pulse voltage source on the other end is established to compare the difference between the two cases: with and without the equivalent circuit inserted. It is shown that, the equivalent circuit has obvious effect on the load voltage waveform when the load matches badly with the pipe, but has few influence when the two match with each other well.
|
Published: 24 November 2016
|
|
|
|
Cite this article: |
Cao Shuyun,Jiao Chongqing. Influence of L-Shape Part of GIS Enclosure on Electromagnetic Propagation Characteristics and Equivalent Circuit Model[J]. Electrical Engineering, 2016, 17(11): 6-12.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I11/6
|
[1] 律方成, 金虎, 王子建, 等. 主分量稀疏化在GIS局部放电特征提取中的应用[J]. 电工技术学报, 2015, 30(8): 282-288. [2] 唐炬, 樊雷, 张晓星, 等. 用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J]. 电工技术学报, 2015, 30(3): 250-257. [3] 律方成, 金虎, 王子建, 等. 基于组合核多特征融合的GIS局部放电检测与识别[J]. 电工技术学报, 2014, 29(10): 334-340. [4] 王娜, 林莘, 徐建源, 等. 特高压GIS变电站中快速暂态过电压仿真及其特性分析[J]. 高电压技术, 2012, 38(12): 3310-3315. [5] 吴昊, 李成榕, 徐海瑞, 等. 用于VFTO测量的GIS窗口式传感器[J]. 电工技术学报, 2012, 27(9): 210- 217. [6] 陈维江, 李志兵, 孙岗, 等. 特高压气体绝缘开关设备中特快速瞬态过电压特性的试验研究[J]. 中国电机工程学报, 2011, 31(31): 38-47. [7] 吴思扬, 叶齐政, 李兴旺, 等. GIS浇注孔的尺寸与局部放电辐射出的UHF电磁波强度的关系的研究[J]. 电工技术学报, 2014(S1): 531-536. [8] 卢斌先, 孟准. 基于GIS制造特征的电磁波仿真模型简化的研究[J]. 电工技术学报, 2013, 28(1): 119-125. [9] 王娜, 林莘, 徐建源, 等. 特高压GIS变电站中快速暂态过电压仿真及其特性分析[J]. 高电压技术, 2012, 38(12): 3310-3315. [10] Povh D, Schmitt H. Voleker O, Witzmann R. Modelling and Analysis Guidelines for Very Fast Transients[J]. IEEE Transactions on Power Delivery, 1996.11.4. [11] Ardito A, Iorio R. et al. Accurate modeling of capacitively graded bushings for calculation of fast transient overvoltage in GIS IEEE trans on Power delivery, 1992. 3. [12] Witzmann R. Fast transients in Gas Insulated Substations (GIS)-Modeling of Different Gis Components[Z]. 1987. [13] Lalot J, Sabot A, Kieffer J, Rowe S W. Preventing earth faulting during switching of disconnectors in GIS including voltage transformer[J]. IEEE Trans. on Power Delivery, VOL. PWRD-1, No.1, Jan. 1986. [14] 丁登伟, 高文胜, 刘卫东. GIS中特高频电磁波模式转换及传播效率的仿真研究[J]. 高压电器, 2014, 6(6): 13-20. [15] 孟准. GIS内部电磁波传播规律的研究[D]. 北京: 华北电力大学, 2011. [16] 刘君华, 徐敏骅, 黄成军. 局部放电电磁波在GIS中的衰减特性[J]. 电工技术学报, 2010, 25(8): 52-58. [17] Whinnery J R, Jamieson H W, Robbins T E. Coaxial-line discontinuities[J]. Proceedings of the IRE, 1944, 32(11): 695-709. [18] Whinnery J R, Jamieson H W. Equivalent circuits for discontinuities in transmission lines[J]. Proceedings of the IRE, 1944, 32(2): 98-114. [19] 邱关源, 罗先觉(修订). 电路[M]. 5版. 北京: 高等教育出版社, 2006. [20] Tesche F M. EMC Analysis Methods and Com- putational Models[M]. Wiley Publication, 1986. |
|
|
|