|
|
The Technology for Selective Coordination of Multilevel Protection in Intelligent Power Distribution System |
Zhang Liping1, Cai Chuanqing2, Miao Xiren1 |
1.College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116; 2. China Mobile communication group Fujian Co., Ltd, Fuzhou 350000 |
|
|
Abstract Smart grid is the future development direction of the electric industry. The reliability and continuity of the power supply is particularly concerned by people. Multilevel protection in intelligent power distribution is critical. The conventional method for short circuit fault in low-voltage system is over-current protection. But it has disadvantages such as inadequate of speed and reliability and inadequate of the ability to coordinate at each level etc. In order to research the mechanism of the full range of selective coordination of multi-level protection and improve the existing lack of selective protection, based on the review of applied research of selective protection methods of short-circuit fault in recent years, the paper proposed the experimental system and control and test device technology solution of multi-level selective short-circuit fault protection, and provide an experimental basis for research of low-voltage multi-level selective coordination protection.
|
Published: 24 November 2016
|
|
|
|
Cite this article: |
Zhang Liping,Cai Chuanqing,Miao Xiren. The Technology for Selective Coordination of Multilevel Protection in Intelligent Power Distribution System[J]. Electrical Engineering, 2016, 17(11): 96-100.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I11/96
|
[1] 陈德桂. 智能电网与低压电器智能化的发展[J]. 低压电器, 2010(5): 1-6, 48. [2] 何瑞华. 智能电网系统中低压电器发展探讨[J]. 低压电器, 2011(1): 1-5. [3] 陈德桂. 低压电器智能化与智能电网[J]. 电气制造, 2010(1): 36-40. [4] 张培铭. 智能电网与智能电器系统[J]. 低压电器, 2014(10): 5-9. [5] 胡学浩. 智能电网——未来电网的发展态势[J]. 电网技术, 2009(14): 1-5. [6] 蔡传庆, 缪希仁, 吴晓梅, 等. 选择性低压短路保护技术[J]. 电器与能效管理技术, 2015(14): 1-6. [7] 王厚余. 低压配电技术的新发展——级间选择性连锁(ZSI)[J]. 低压电器, 2002(1): 46-47. [8] 汤玉生. 低压配电系统中配电开关的选择性保护配合的应用[J]. 南方建筑, 2006(12): 139-140. [9] Draft IEC/TR 61912-2, Ed.1.0: “Low-voltage switch- gear and controlgear-overcurrent protective devices- Selectivity under over-current conditions, International Electrotechnical Commission”, 2007, 23: 10. [10] 张彬, 刘哲, 王宁. 塑壳断路器的选择性保护分析[J]. 低压电器, 2011(16): 10-13. [11] 何瑞华, 尹天文. 我国低压电器现状与发展趋势[J]. 低压电器, 2014(1): 1-10, 26. [12] 陈丽安, 张培铭. 基于形态小波的低压系统短路故障早期检测[J]. 中国电机工程学报, 2005, 25(10): 24-28, 88. [13] 陈丽安, 张培铭, 缪希仁. 基于小波变换的低压系统短路故障的早期预测[J]. 电工技术学报, 2003, 18(2): 91-94. [14] 缪希仁, 吴晓梅. 低压系统多层级短路电流早期检测与预测研究[J]. 电工技术学报, 2014, 29(11): 177- 183. [15] 陈丽安, 张培铭. 基于小波变换的短路故障早期检测门限值的研究[J]. 电工技术学报, 2005, 20(3): 64-69. [16] 郭银婷, 缪希仁. 低压配电短路电流检测与分断机构技术[J]. 低压电器, 2013(7): 18-22. [17] 李飙, 缪希仁. 短路故障快速检测与限制技术综述[J]. 电器与能效管理技术, 2014(18): 1-5, 24. [18] 缪希仁, 李飙, 吴晓梅, 等. 基于短路早期检测的中压故障电流快速限制技术[J]. 电力自动化设备, 2014, 34(11): 75-81. [19] 郅萍, 缪希仁, 吴晓梅. 低压系统短路故障建模及电流预测技术[J]. 电力系统保护与控制, 2016, 44(7): 39-46. [20] 缪希仁. 低压配电系统全范围选择性协调保护技术[J]. 低压电器, 2014(9): 19-22. |
|
|
|