|
|
Power Quality Signals’ De-noising Method based on Tunable Q-factor Wavelet Transform and Basis Pursuit |
Gao Qian, Chen Xiaoying, Sun Liying |
Electric Engineering College, Liaoning University of Technology, Jinzhou, Liaoning 121001 |
|
|
Abstract The power quality signals acquired from the locale contain gaussian white noise and impulse noise,which bring difficulty to the detection and analysis of power quality signals, so the power quality signals should be adopted to perform denoising pretreatment. Aiming at the limitation of the traditional denoising methods, the denoising method based on tunable Q-factor wavelet transform and basis pursuit is given in this paper. Firstly, the wavelet basis functions with different Q-factor are adopted to perform the signal sparse decomposition for the noisy signals; secondly, the BP denoising algorithm is used to optimize the obtained wavelet coefficients; lastly, the optimized wavelet coefficients are reconstructed, then the main characteristics of power quality signal, gaussian white noise and impulse noise are separated, which can achieve the purpose of denoising. The simulation results show that this method can effectively remove the white gaussian noise and impulse noise from the power quality signal, and the denoising effect and reliability is superior to the widely used wavelet denoising and ensemble empirical mode decomposition denoising.
|
Published: 19 May 2016
|
|
|
|
Cite this article: |
Gao Qian,Chen Xiaoying,Sun Liying. Power Quality Signals’ De-noising Method based on Tunable Q-factor Wavelet Transform and Basis Pursuit[J]. Electrical Engineering, 2016, 17(5): 49-53.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I5/49
|
[1] 邬春明, 谢妮娜. 改进的小波阈值在电能质量信号去噪中的应用[J]. 计算机工程与应用, 2012, 48(3): 114-116. [2] 孙维妮. 暂态电能质量扰动的识别与监测[D]. 北京:中国石油大学, 2009. [3] 程扬军. 暂态电能质量扰动检测方法研究[D]. 长沙:湖南大学, 2009. [4] 程扬军, 黄纯, 何朝辉, 等. 基于自适应顺序形态滤波的电能质量去噪算法[J]. 计算机仿真, 2009, 26(12): 218-220, 314. [5] 秦代春, 刘强, 周林, 等. 电能质量信号去噪方法研究[J]. 华东电力, 2009, 35(5): 767-772. [6] 韩刚, 张建文, 褚鑫. 基于EEMD自适应阈值去噪的电能质量扰动检测与定位研究[J]. 电测与仪表, 2014, 51(2): 45-49, 57. [7] Selesnick I W. Wavelet transform with tunable Q- Factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. [8] 王宏超, 陈进, 董广明, 等. 可调品质因子小波变换在转子早期碰摩故障诊断中应用[J]. 振动与冲击, 2014, 33(10): 77-80. [9] 史丽丽. 基于稀疏分解的信号去噪方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [10] Vaswani N. Modified basis pursuit denoising (modified-bpdn) for noisy compressive sensing with partially know support[C]//IEEE International Con- ference on Acoustics Speech and Signal Processing. W.Lu, 2010: 3926-3929. [11] M V Afonso JM, Figueiredo MT. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing : a Publication of the IEEE Signal Processing Society, 2010, 19(9): 2345-2356. [12] 张明, 李开成, 胡益胜. 基于Bayes估计的双小波维纳滤波电能质量信号去噪算法[J]. 电力系统保护与控制, 2011, 39(4): 52-57. |
|
|
|