|
|
Prediction System for Dynamic Line Load Capacity based on Climate Model |
Jiang Miao, Liu Yadong, Sheng Gehao, Jiang Xiuchen |
Shanghai Jiao Tong University, Shanghai 200240 |
|
|
Abstract With the increase of the power scale systems, the contradiction of uneven distribution between load and energy is increasingly prominent, along with insufficient transmission capacity of existing transmission lines. Monitoring and preditcting dynamic line load capacity can solve the above problems and provide an important reference for line load scheduling and maintenance program. Using meteorological data. A prediction system for dynamic line load capacity base on Climate Model is achieved. The article elaborates details about the system principle, hardware design and function, the system is verified by the result of field test. Predicting steady-state and transient dynamic line load capacity can fully unearth the potential capacity of the transmission line.
|
Published: 27 July 2016
|
|
|
|
Cite this article: |
Jiang Miao,Liu Yadong,Sheng Gehao等. Prediction System for Dynamic Line Load Capacity based on Climate Model[J]. Electrical Engineering, 2016, 17(7): 1-6.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I7/1
|
[1] 毛先胤, 盛戈嗥, 刘亚东, 等. 架空输电线路暂态载流能力的计算和评估[J]. 高压电器, 2011, 47(1): 70-74. [2] 刘亚东. 动态提高输电线路容量系统硬件平台的设计与实现[D]. 上海: 上海交通大学, 2007. [3] 黄新波, 孙钦东, 张冠军, 等. 输电线路实时增容技术的理论计算与应用研究[J]. 高电压技术, 2008, 34(6): 1138-1144. [4] 任丽佳. 基于导线张力的动态提高输电线路输送容量技术[D]. 上海: 上海交通大学, 2008. [5] 王孔森, 盛戈皞, 孙旭日, 等. 基于径向基神经网络的输电线路动态容量在线预测[J]. 电网技术, 2013, 37(6): 1719-1725. [6] 王晓霞, 马良玉, 王兵树, 等. 进化Elman神经网络在实时数据预测中的应用[J]. 电力自动化设备, 2011, 31(12): 77-81. |
|
|
|