|
|
Multivariate Power Load Forecasting Method based on Econometrics and Grey Theory |
Han Fuyao, Liu Yawei |
Electrical Engineering College, Northeast Dianli University, Jilin, Jilin 132012 |
|
|
Abstract In order to fully consider the diversity of urban development and the various influencing factors in the process of power load forecasting, and improve the forecast accuracy of power network plan, a method of multivariate power load forecasting based on the econometrics and grey theory is proposed. Firstly, this method determines strong correlation factors of the power load in the forecasting process through the correlation analysis between the power load and the variables. Then we find the connection between each other through the econometric theory of statistics, and establish the mathematical model for forecasting between the power load and the variables. Finally, we predict the value of each variable in the target year in order to solve the problems caused by the lack of data and the uncertainty of fluctuation. and brought them into the mathematical model in order to complete the load forecasting. An engineering example shows that the method is correct and effective.
|
Published: 20 July 2017
|
|
|
|
Cite this article: |
Han Fuyao,Liu Yawei. Multivariate Power Load Forecasting Method based on Econometrics and Grey Theory[J]. Electrical Engineering, 2017, 18(7): 37-40.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I7/37
|
[1] 肖白, 周潮, 穆钢. 空间电力负荷预测方法综述与展望[J]. 中国电机工程学报, 2013, 33(25): 78-92. [2] 唐祥玲, 王平, 李思岑, 等. 基于方差-协方差组合预测的中长期电力负荷预测研究[J]. 电气技术, 2015, 16(1): 15-18. [3] 肖白, 杨修宇, 穆钢, 等. 基于元胞历史数据的负荷密度指标法[J]. 电网技术, 2014, 38(4): 1014-1019. [4] 符杨, 曹家麟, 谢楠, 等. 基于模糊综合评价的负荷密度指标选取新方法[J]. 电网技术, 2007, 31(18): 19-22. [5] 符杨, 朱兰, 曹家麟. 基于模糊贴近度理论的负荷密度指标求取新方法[J]. 电力系统自动化, 2007, 31(19): 46-49, 90. [6] 吕金虎, 张锁春. 加权一阶局域法在电力系统短期负荷预测中的应用[J]. 控制理论与应用, 2002, 19(5): 767-770. [7] 李天云, 刘自发. 电力系统负荷的混沌特性及预测[J]. 中国电机工程学报, 2000, 20(11): 36-40. [8] 尤勇, 盛万兴, 王孙安. 一种新型断区负荷预测模型的研究及应用[J]. 中国电机工程学报, 2002, 22(9): 15-18. [9] 肖白, 杨修宇, 穆钢, 等. 基于多变量分析的城市电网空间负荷预测方法[J]. 东北电力大学学报, 2013, 33(1): 39-44. [10] 程其云, 王有元, 陈伟根. 基于改进主成分分析的短期负荷预测方法[J]. 电网技术, 2005, 29(3): 64-67. [11] 李鹏飞. 加玛力汗·库马什, 常喜强. 几种电力负荷预测方法的比较[J]. 电气技术, 2011, 12(6): 49-52. [12] 李艳梅, 孙薇. 多元线性回归分析在用电量预测中的应用[J]. 华北电力技术, 2003(11): 40-41. [13] 雷绍兰, 孙才新, 周湶, 等. 电力短期负荷的多变量时间序列线性回归预测方法研究[J]. 中国电机工程学报, 2006, 26(2): 25-29. [14] 陈辰旭, 杨耿杰, 郭谋发. 改进的GM(1,1)模型在配电网日负荷预测中的应用[J]. 电气技术, 2012, 13(5): 14-17, 21. [15] Morita H, Zhang Dp, Tamura Y. Long-term load forecasting using grey system theory[J]. Electrical Engineering in Japan, 2007, 115(2): 11-20. [16] 余建明, 燕飞, 杨文宇. 等中长期电力负荷的变权灰色组合预测模型[J]. 电网技术, 2005, 29(17): 26-29. [17] 郑志杰, 李磊, 赵兰明. 考虑数据不确定性的中长期电力负荷预测[J]. 电力系统保护与控制, 2011, 39(7): 123-126, 132. [18] 丁浩, 荣蓉. 基于多元线性回归模型和灰色理论的山东省用电量预测[J]. 河南科学, 2013(9): 1535- 1539. |
|
|
|