|
|
Analysis of maximum photovoltaic integrated capacity and its influences on distribution networks based on probabilistic load flow |
Liu Lei1, Lin Jinfu2, Liu Fuyong2 |
1. Standard Economic Quality Office, Laiwu, Shandong 271100; 2. Laiwu Ketai Electric Power Technology Co., Ltd, Laiwu, Shandong 271100 |
|
|
Abstract Based on Monte Carlo simulation and power correction of distribution networks power flow method, this paper establishes photovoltaic power generation system stochastic model and load stochastic model, then puts forward probabilistic load flow calculation method for distribution networks with photovoltaic power system. Application of the proposed probabilistic load flow method, using the IEEE-33 node distribution system and typical pattern distribution system, this paper researches on the photovoltaic power generation system’s impact on distribution networks from line loss and node voltage. Simulation results show that in a certain range of permeability of photovoltaic power system, photovoltaic power system have a positive effect on distribution network, which can enhance the node voltage and decrease the line loss. However, when the permeability is excessive the reverse power flow will occur, making the node voltages above the allowable value and increasing the line loss. Furthermore, according to the experimental data the appropriate permeability range will be given.
|
Received: 11 January 2018
Published: 17 July 2018
|
|
|
|
Cite this article: |
Liu Lei,Lin Jinfu,Liu Fuyong. Analysis of maximum photovoltaic integrated capacity and its influences on distribution networks based on probabilistic load flow[J]. Electrical Engineering, 2018, 19(7): 15-20.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I7/15
|
[1] Chen P, Chen Z, Bak-Jensen B.Probabilistic load flow: A review[C]//2008 Third International Conference on Electric Utility Deregu-Lation and Restructuring and Power Technologies, VOLS 1-6. Nanjing, China, 2008: 1586-1591. [2] 胡金磊, 张尧, 李聪. 交直流电力系统概率潮流计算[J]. 电网技术, 2008, 32(18): 36-40. [3] Allan R N.Leite de S A M, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions[J]. IEEE Trans on PAS, 1981, 100(5): 2539-2546. [4] Zhang P, Lee S T.Probabilistic load flow computation using the method of combined cumulant and Gram- Charlier expansion[J]. IEEE Trans on Power Systems, 2004, 19(1): 676-682. [5] 王锡凡, 王秀丽. 电力系统随机潮流分析[J]. 西安交通大学学报, 1988, 22(2): 87-97. [6] 戎晓雪, 别朝红, 石文辉, 等. 考虑风电场相关性的含风电电力系统随机潮流分析[J]. 电网技术, 2014, 38(8): 2161-2167. [7] 彭谦, 姜彤, 杨以涵, 等. 快速三相高斯潮流算法[J]. 中国电机工程学报, 2009, 29(4): 48-52. [8] Teng J H.A direct approach for distribution system load flow solutions[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 882-887. [9] Luo G X, Semlyen A.Efficient load flow for large weakly meshed networks[J]. IEEE Transactions on Power Systems, 1990, 5(4): 1309-1316. [10] 陈珩. 电力系统稳态分析[M]. 北京: 水利电力出版社, 1985. [11] Shirmohammadi D, Hong H W, Semlyen A, et al.A compensation-based power flow method for weakly meshed distribution and transmission networks[J]. IEEE Transactions on Power Systems, 1988, 3(2): 753-762. [12] 左巍. 分布式发电系统中风能和太阳能的模拟[D]. 西安: 西安交通大学, 2004. [13] Zhang P, Lee S T.Probabilistic load flow computation using the method of combined cumulant and Gram- Charlier expansion[J]. IEEE Trans on Power Systems, 2004, 19(1): 676-682. [14] 余剑波, 电力系统连锁故障预警模型研究[J]. 电气技术, 2017, 18(10): 88-91. [15] 吴治均, 李明昆. 基于馈线路径集合法的并网型微电网可靠性评估[J]. 电气技术, 2016, 17(10): 17-22. [16] 唐磊, 曾成碧, 苗虹, 等. 基于蒙特卡洛的光伏多峰最大功率跟踪控制[J]. 电工技术学报, 2015, 30(1): 170-176. [17] 任洲洋, 颜伟, 项波, 等. 考虑光伏和负荷相关性的概率潮流计算[J]. 电工技术学报, 2015, 30(24): 181-187. |
|
|
|