Abstract An optimal control strategy of energy storage systems is proposed in the paper for applications in an renewable energy based industrial park under electricity market. Driven by the short term forecast of hourly electricity generation of wind and solar plants, a load daily operational mode is chosen that best fit the application. The controlled energy storage system interacts with the wholesale electricity market, selling and purchase electricity to compensate the imbalance hourly power in the industrial park, as well contribute to the valley filling and peak shifting under the hourly price incentives. A nonlinear optimization programming problem of the energy storage system is formulated in the paper and solved using a Matlab solver. Analyzing into the three scenario examples have proven that the proposed energy storage control strategy is feasible. The paper discusses the uncertainty associated with wind and solar power projections, where measures in real-time market to deal with the uncertainty are analyzed. By optimal control of the energy storage system, seamless connection and trading to the wholesale electricity market, dispatching between the renewable energy based industrial park and intermittent renewable energy accommodation are realized.
Ji Bin,Tan Jiancheng,Zeng Xuetong. Energy storage optimal control strategy for renewable energy based industrial park under electricity market[J]. Electrical Engineering, 2018, 19(8): 22-29.