|
|
Analysis of influencing factors on temperature distribution characteristics of high current switchgear |
Li Jiangtao, Sun Yi, Li Qingyu, Dong Ning, Zhao Zheng |
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049 |
|
|
Abstract Load current, ambient temperature, contact resistance is an important factor affecting the temperature of high current switchgear. In this paper, the electromagnetic-heat transfer-convection multi-physics coupled simulation model is established by COMSOL to calculate the internal temperature distribution of 4000A high current switchgear. The influence of load current, ambient temperature and contact resistance on the temperature rise of tulip contact and bus bars were studied. The steady state temperature rise experiment of high current switchgear under different load conditions is designed and carried out. The experimental results verify the rationality of the simulation model. The results showed that the temperature rise of tulip contact has exceeded the upper limit at about 80% load current and the forced heat dissipation of switchgear is required. The ambient temperature has a great influence on the temperature rise inside the switchgear. The monitoring of the ambient temperature is necessary in designing the switchgear temperature monitoring system. The increase of contact resistance of contact points has a great influence on the temperature rise of tulip contacts and bus bars. The temperature rise of contacts should be monitored in real time so as to find the abnormal running state. The temperature rise of current transformer in high current switchgear is an important index needed to be considered in the temperature monitor system. The improper installation of current transformer leads to a severe temperature rise of bus bars. The results may provide a theoretical basis for the follow-up to determine the fault location of on-line switchgear temperature monitoring and the design of operation and maintenance plan.
|
Received: 30 March 2018
Published: 23 October 2018
|
|
|
|
Cite this article: |
Li Jiangtao,Sun Yi,Li Qingyu等. Analysis of influencing factors on temperature distribution characteristics of high current switchgear[J]. Electrical Engineering, 2018, 19(9): 12-18.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I9/12
|
[1] 王秉政, 江健武, 赵灵, 等. 高压开关柜接触发热温度场数值计算[J]. 高压电器, 2013(12): 42-48. [2] 贾文卓. 基于ANSYS的开关柜电场与温度场仿真计算[D]. 天津: 天津大学, 2013. [3] 徐立群, 申亮, 倪福生. KYN28A-12kV/4000A开关柜的结构改进与温度场分析[J]. 高压电器, 2017(3): 254-258. [4] 任君鹏, 杜志叶, 王栋, 等. 10kV高压开关柜三维流体-温度场仿真数值分析[C]//中国电机工程学会高电压专业委员会2015年学术年会论文集, 西安, 2015: 1-8. [5] 杜丽, 丁永生, 姜富修. 一种高压开关柜的热效应仿真方法[J]. 电气技术, 2017, 18(11): 133-137. [6] 孙国霞, 舒乃秋, 吴晓文, 等. 基于多物理场耦合的气体绝缘母线触头接触温升有限元计算[J]. 电工技术学报, 2013(S2): 408-413. [7] 荣命哲. 电接触理论[M]. 北京: 机械工业出版社, 2004. [8] 曹志民, 吴小钊, 刘永庆, 等. 一种非自力型梅花触头抱紧力计算方法[J]. 高压电器, 2015(8): 98-101. [9] 徐国政, 张节容. 高压断路器原理和应用[M]. 北京:清华大学出版社, 2000. [10] 黄勐哲, 陈丽安. 装有记忆合金弹簧的断路器梅花触头温度场仿真分析[J]. 电力科学与技术学报, 2016, 31(3): 146-151. [11] 崔光照, 刘宾. 10kV室内开关柜高压触点温度无线监测系统的设计[J]. 电气技术, 2016, 17(6): 66-69. [12] 陈强, 李庆民, 丛浩熹, 等. 基于多点分布式光纤光栅的GIS隔离开关触头温度在线监测技术[J]. 电工技术学报, 2015, 30(12): 298-306. [13] 李震彪, 程礼椿. 短路电流下的电器发热分析[J]. 电器与能效管理技术, 1995(6): 28-30. |
|
|
|