|
|
The application of multiclass support vector machine in power transformer fault diagnosis |
Sun Zhipeng1, Cui Qing2, Zhang Zhilei2, Wang Tao2, Zhang Tianwei3 |
1. College of Electrical Engineering, Northeast Electric Power University, Jilin, Jilin 132012; 2. Hebei Electric Power Company Shijiazhuang Power Supply Company, Shijiazhuang 050051; 3. Beijing Runwei Tianhua Power Technology Co., Ltd, Beijing 102211 |
|
|
Abstract The support vector machine is a new general learning method based on statistical learning theory, which better solves the learning problems of small samples, high dimensionality and nonlinearity. The performance of SVM in classification depends largely on the selection of kernel functions and kernel parameters. At present, the commonly used parameter optimization methods are grid search method, genetic algorithm and particle swarm optimization algorithm. The concentration of the five characteristic gases dissolved in transformer oil are the inputs of support vector machine, the five states of the transformer are the outputs. In the built model the radial based kernel is selected, the optimized parameters are obtained by grid search. The experiment shows that the model enables to detect transformer faults with a higher diagnosis rate under condition of small samples. The diagnosis rate for fault samples gets 83.3%, which proves its effectiveness and practicality.
|
Received: 05 March 2019
Published: 29 September 2019
|
|
|
|
Cite this article: |
Sun Zhipeng,Cui Qing,Zhang Zhilei等. The application of multiclass support vector machine in power transformer fault diagnosis[J]. Electrical Engineering, 2019, 20(10): 25-28.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I10/25
|
[1] 俞纪维, 陈剑青, 沈志华, 等. 大型油浸式电力变压器C2H2含量的探讨[J]. 电气技术, 2016, 17(3): 85-89. [2] 郭创新, 朱承治, 张琳, 等. 应用多分类多核学习支持向量机的变压器故障诊断方法[J]. 中国电机工程学报, 2010, 30(13): 128-134. [3] 林毅, 胡发明, 顾凌春, 等. 110kV变压器总烃超标原因分析[J]. 电气技术, 2014, 15(1): 81-83. [4] 肖燕彩, 陈秀海, 朱衡君. 遗传支持向量机在电力变压器故障诊断中的应用[J]. 上海交通大学学报, 2007, 41(11): 1878-1881, 1886. [5] 闫琴. 一种新颖的电力变压器故障诊断方法研究[J]. 电源技术应用, 2008, 11(12): 48-51. [6] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. [7] 潘再平, 张震, 潘晓弘. 基于QPSO算法的电力变压器优化设计[J]. 电工技术学报, 2013, 28(11): 42-47. [8] 赵小勇. 基于特征气体分层特性的电力变压器故障诊断技术研究[J]. 电气技术, 2012, 13(11): 10-13. [9] 李恩文, 王力农, 宋斌, 等. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602. [10] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. [11] 吕干云, 程浩忠, 董立新, 等. 基于多级支持向量机分类器的电力变压器故障识别[J]. 电力系统及其自动化学报, 2005, 17(1): 19-22, 52. [12] 成亚玲, 谭爱平. 一种基于改进最小二乘支持向量机的变压器故障诊断方法研究[J]. 制造业自动化, 2015, 37(10): 87-89. [13] 吴晓辉, 刘炯, 梁永春, 等. 支持向量机在电力变压器故障诊断中的应用[J]. 西安交通大学学报, 2007, 41(6): 722-726. [14] 董明, 孟源源, 徐长响, 等. 基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J]. 中国电机工程学报, 2003, 23(7): 88-92. [15] 黄明明, 施建强, 顾捷. 基于改进支持向量机的变压器故障诊断[J]. 南京工程学院学报: 自然科学版, 2018, 16(2): 22-25. |
|
|
|