|
|
Research on fault diagnosis of power transformer based on classification decision tree algorithm |
Wang Tao1, Sun Zhipeng2, Cui Qing1, Zhang Zhilei1, Zhang Tianwei3 |
1. Hebei Electric Power Company Shijiazhuang Power Supply Company, Shijiazhuang 050051; 2. College of Electrical Engineering, Northeast Electric Power University, Jilin, Jilin 132012; 3. Beijing Runwei Tianhua Power Technology Co., Ltd, Beijing 102211 |
|
|
Abstract Power transformers are the most important power equipment in the stable operation of power systems. Fault identification of power transformers has always been a top priority for all power work. In recent years, with the development of artificial intelligence, many intelligent algorithms have been introduced into the research of power transformer faults. In this paper, a power tree fault diagnosis model based on decision tree algorithm is proposed. Compared with other classification models, this model has the advantages of high classification accuracy, fast calculation speed, no need for any domain knowledge and parameter assumptions, and easy implementation etc.
|
Received: 05 May 2019
Published: 19 November 2019
|
|
|
|
Cite this article: |
Wang Tao,Sun Zhipeng,Cui Qing等. Research on fault diagnosis of power transformer based on classification decision tree algorithm[J]. Electrical Engineering, 2019, 20(11): 16-19.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I11/16
|
[1] 俞纪维, 陈剑青, 沈志华, 等. 大型油浸式电力变压器C2H2含量的探讨[J]. 电气技术, 2016, 17(3): 85-89. [2] 林毅, 胡发明, 顾凌春, 等. 110kV变压器总烃超标原因分析[J]. 电气技术, 2014, 15(1): 81-83. [3] 闫琴. 一种新颖的电力变压器故障诊断方法研究[J]. 电源技术应用, 2008, 11(12): 48-51. [4] 赵小勇. 基于特征气体分层特性的电力变压器故障诊断技术研究[J]. 电气技术, 2012, 13(11): 10-13. [5] 高宁化, 王姮, 冯兴华. 基于动态模糊决策树的心电信号分类方法[J/OL]. 计算机工程: 1-8[2019-03-23]. http://kns.cnki.net/KCMS/detail/31.1289.tp.20190228.1711.006.html [6] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. [7] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. [8] 祝端兴. 变压器常见故障与诊断技术研究[J]. 科技风, 2017(15): 171. [9] 潘再平, 张震, 潘晓弘. 基于QPSO算法的电力变压器优化设计[J]. 电工技术学报, 2013, 28(11): 42-47. [10] 邬蓉蓉, 张炜. 综合遗传优化支持向量机的变压器故障诊断模型[J]. 变压器, 2018, 55(11): 40-44. [11] 李恩文, 王力农, 宋斌, 等. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602. [12] 陈杰, 邬春学. 决策树C4.5算法改进与应用[J]. 软件导刊, 2018, 17(10): 88-92. [13] 王俊, 张海洋, 赵凯旋, 等. 基于最优二叉决策树分类模型的奶牛运动行为识别[J]. 农业工程学报, 2018, 34(18): 202-210. [14] 杨小军, 钱鲁锋, 别致. 基于WEKA平台的决策树算法比较研究[J]. 舰船电子工程, 2018, 38(10): 34-36, 97. |
|
|
|