|
|
Multi-time-space data fusion based on naive Bayes and D-S evidence theory |
Lu Jun1, Wang Ziyao2, Yu Tao2 |
1. Zhaoqing Power Supply Bureau of Guangdong Power Grid, Zhaoqing, Guangdong 526060; 2. School of Electric Power, South China University of Technology, Guangzhou 510640 |
|
|
Abstract Aiming at solving the problem of different sampling periods between sensors and various devices in the electric internet of things, this paper proposes a multi-time-space data fusion method based on naive Bayes and D-S evidence theory. The outstanding advantage of this method is that it combines the data of sensors in multiple time periods and multiple different locations. Firstly, the naive Bayes classifier is used to obtain the reliability distribution, which overcomes the shortcomings of the original expert system for reliability distribution. Then D-S evidence theory is used to fuse, and finally get the state evaluation of the system, which effectively integrate multi-time-space data. The experimental results show that the proposed method has obvious improvement compared with other machine learning algorithms, and can effectively evaluate the state of the system.
|
Received: 14 April 2019
Published: 19 November 2019
|
|
|
|
Cite this article: |
Lu Jun,Wang Ziyao,Yu Tao. Multi-time-space data fusion based on naive Bayes and D-S evidence theory[J]. Electrical Engineering, 2019, 20(11): 27-32.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I11/27
|
[1] 本报评论员. 以强烈使命感高质量推进泛在电力物联网建设[N]. 国家电网报, 2019-03-11(1). [2] 刘云鹏, 许自强, 李刚, 等. 人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述[J]. 高电压技术, 2019, 45(2): 337-348. [3] 赵伟, 李哲, 史海锋, 等. 基于层次分析法的浙江电网雷击跳闸孕灾环境敏感性评估[J]. 高电压技术, 2017, 43(2): 619-626. [4] 薛铮, 孙勇, 董政呈, 等. 基于模糊Petri网的用电信息采集系统故障诊断方法[J/OL]. 电测与仪表: 1-6 [2019-04-01]. http://kns.cnki.net/kcms/detail/23.1202. TH.20190110.1611.002.html. [5] 李刚, 于长海, 范辉, 等. 基于多级决策融合模型的电力变压器故障深度诊断方法[J]. 电力自动化设备, 2017, 37(11): 138-144. [6] Zheng H B, Liao R J, Grzybowski S, et al.Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimisation[J]. IET Electric Power Applications, 2011, 5(9): 691-696. [7] 程养春, 张振亮. 基于随机森林的变压器多源局部放电诊断[J]. 中国电机工程学报, 2018, 38(17): 5246-5256. [8] 苑津莎, 何亚军, 秦英. 一种基于改进贝叶斯分类器的基本信任分配构造方法[J]. 电测与仪表, 2014, 51(18): 34-38. [9] 高湛军, 李思远, 彭正良, 等. 基于网络树状图和改进D-S证据理论的配电网故障定位方法[J]. 电力自动化设备, 2018, 38(6): 65-71. [10] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [11] 宁可, 孙同晶, 赵浩强. 基于属性关联的朴素贝叶斯分类算法[J]. 计算机工程, 2018, 44(6): 18-23. [12] 侯文浩, 凌云, 徐敬成, 等. 基于决策树和贝叶斯分类器相结合的组合分类器电器类型识别方法[J]. 新型工业化, 2018, 8(6): 21-25. [13] 赵秋月, 左万利, 田中生, 等. 一种基于改进D-S证据理论的信任关系强度评估方法研究[J]. 计算机学报, 2014, 37(4): 873-883. [14] 林湘宁, 刘畅, 汪致洵, 等. 基于动态权重修正D-S证据理论的最后断路器多判据保护跳闸策略[J]. 中国电机工程学报, 2018, 38(9): 2609-2621. [15] Breiman L, Friedman J H, Olshen R A, et al.Classifi- cation and regression trees[M]. Wadsworth, 1984. [16] Lv Ganyun, Cheng Haozhong, Zhai Haibao, et al.Fault diagnosis of power transformer based on multi-layer SVM classifier[J]. Electric Power Systems Research, 2005, 75(1): 9-15. [17] Friedman J H, Bentley J L, Finkel R A.An algorithm for finding best matches in logarithmic expected time[J]. ACM Transactions on Mathematical Software, 1977, 3(3): 209-226. [18] Tu Z.Probabilistic boosting-tree: learning discri- minative models for classification, recognition, and clustering[C]//Tenth IEEE International Conference on Computer Vision, 2005(2): 1589-1596. [19] Tu M C, Shin D, Shin D.A comparative study of medical data classification methods based on decision tree and bagging algorithms[C]//Eighth IEEE Inter- national Conference on Dependable, Automatic and Secure Computing, 2010: 183-187. [20] Manning C D, Raghavan P, Hinrich S.Introduction to information retrieval[M]. New York: Cambridge University Press, 2008. |
|
|
|