|
|
The influence of fog-haze on AC corona loss of overhead transmission line conductor |
Fang Xiaoqiu1, Wang Man1, Du Shengji2 |
1. State Grid Corporation of China, Chongqing Company, Jiangbei Branch, Chongqing 400000; 2. State Grid Corporation of China, Chengkou Branch, Chongqing 400000 |
|
|
Abstract As a special weather condition, fog-haze has widely public attention. A temporary fog-haze chamber is built in this paper, kaolin particle with medium diameter of 2.5μm and (NH4)2SO4 resolutions are adopted to simulate the fog-haze. The corona loss experiments are performed in different fog-haze densities. The obtained artificial simulated particle diameter and fog-haze density are similar to that of real fog-haze. The corona loss experiments in different fog-haze densities show that: The corona loss grows in a shape of power function with the increase of electric field intensity. Moreover, with the augment of fog-haze density around the transmission lines, the corresponding corona loss also increase, but the increment is not significant.
|
Received: 21 December 2018
Published: 19 August 2019
|
|
|
|
Cite this article: |
Fang Xiaoqiu,Wang Man,Du Shengji. The influence of fog-haze on AC corona loss of overhead transmission line conductor[J]. Electrical Engineering, 2019, 20(8): 95-98.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I8/95
|
[1] 卢明. 雾霾与输变电设备外绝缘配置[M]. 北京: 中国电力出版社, 2017. [2] 潘本锋, 汪巍, 李亮, 等. 我国大中型城市秋冬季节雾霾天气污染特征与成因分析[J]. 环境与可持续发展, 2013, 38(1): 33-36. [3] 常清, 杨复沫, 李兴华, 等. 北京冬季雾霾天气下颗粒物及其化学组分的粒径分布特征研究[J]. 环境科学学报, 2015, 35(2): 363-370. [4] 王黎明, 刘动, 陈枫林, 等. 雾霾模拟方法及其装置研究[J]. 高电压技术, 2014, 40(11): 3297-3304. [5] 周羽生, 罗屿, 赵纯, 等. 人工气候室雾霾模拟方法及装置[J]. 高电压技术, 2017, 43(3): 909-914. [6] 邓鹤鸣, 何正浩, 许宇航, 等. 雾霾对冲击放电路径影响特性的分析[J]. 高电压技术, 2009, 35(11): 2669-2673. [7] 屠幼萍, 孙佑飞, 彭庆军, 等. 雾霾环境下自然积污绝缘子的污秽颗粒粒径分布特性[J]. 高电压技术, 2014, 40(11): 3318-3326. [8] 徐森, 仵超, 李少华, 等. 雾霾期间绝缘子的积污特性研究[J]. 中国电机工程学报, 2017(7): 2142-2151. [9] 杨帆, 代锋, 罗汉武, 等. 雾霾天气下的直流输电线路离子流场分布特性及其影响因素[J]. 电工技术学报, 2016, 31(12): 49-57. [10] 王黎明, 王元九, 张楚岩, 等. 空间颗粒物在直流输电线路下的运动特性[J]. 高电压技术, 2017, 43(2): 547-556. [11] 刘洋. 雾霾的模拟及其对棒-板空气间隙放电特性影响研究[D]. 重庆: 重庆大学, 2015. [12] Straumann U.Mechanism of the tonal emission from ac high voltage overhead transmission lines[J]. Journal of Physics D: Applied Physics, 2011, 44(7): 1-8. [13] 邬雄, 张广洲, 刘云鹏. 输电线路电晕及电晕效应[M]. 北京: 中国电力出版社, 2018. [14] HJ 633—2012. 环境空气质量指数(AQI)技术规定(试行)J 633—2012. 环境空气质量指数(AQI)技术规定(试行)[S]. 2016. [15] 安德生,等. 345千伏及以上超高压输电线路设计参考手册[M]. 电力工业部武汉高压研究所译. 北京: 电力工业出版社, 1981. |
|
|
|