|
|
Wide area damping control strategy for interarea power grid contains multi-voltage-source converters power electronics equipment |
Xu Maoda1, Wang Ye2, Hao Wenbo1, Liu Cheng2, Chen Xiaojie2 |
1. Electric Power Research Institute, State Grid Heilongjiang Electric Power Company, Harbin 150030; 2. School of Electrical Engineering, Northeast Electric Power University, Jilin, Jilin 132012 |
|
|
Abstract With the increasing penetration ratio of many voltage-source converter (VSC) power electronic equipment into the power system, interconnected power grid made up of many converters is gradually formed. As to the characteristics of reactive coordinated modulation using multi-voltage- source converters, reactive coordinated ability of multi-converters are used to design the wide-area damping control strategy in this paper. And it provides damp for system and reduce power oscillation. Firstly, control links of the multi-voltage-source converters are introduced, and the multi-voltage-source converters versatility model are researched and constructed. Secondly, the multi-converters reactive modulation damping contribution mechanism are analyzed. Finally, power oscillation of interconnected power grid are supplied for wide-area damping using fuzzy control of reactive power link of multi-voltage-source converters. By simulation example of multi-voltage-source converters, simulation results shows that the method can provide damping for the system, effectively suppress inter-regional oscillations, and enhance the stability of the power system.
|
Received: 02 February 2019
Published: 12 September 2019
|
|
|
|
Cite this article: |
Xu Maoda,Wang Ye,Hao Wenbo等. Wide area damping control strategy for interarea power grid contains multi-voltage-source converters power electronics equipment[J]. Electrical Engineering, 2019, 20(9): 39-46.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I9/39
|
[1] 林旻威, 温步瀛. 大规模风电接入对电力系统暂态稳定性影响研究综述[J]. 电气技术, 2017, 18(4): 1-8, 38. [2] 武平, 郭巍, 晋春杰, 等. 浅谈我国电力与能源现状及解决途径[J]. 电气技术, 2018, 19(5): 1-4, 14. [3] 刘铖, 蔡国伟, 杨德友, 等. 双馈感应风机分数阶自抗扰广域阻尼控制器设计[J]. 高电压技术, 2016, 42(9): 2800-2807. [4] 黄晟, 王辉, 廖武, 等. 基于VSC-HVDC串并联拓扑结构风电场协调控制策略研究[J]. 电工技术学报, 2015, 30(23): 155-162. [5] 索江镭, 胡志坚, 刘宇凯, 等. 大规模光伏发电并网对互联电力系统阻尼特性的影响及其阻尼控制策略[J]. 西安交通大学学报, 2015, 49(2): 99-105. [6] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. [7] 冯双, 蒋平, 吴熙. 抑制共振机理低频振荡的PSS设计方法[J]. 电力系统保护与控制, 2016, 44(7): 1-6. [8] 张子泳, 胡志坚, 刘宇凯. 计及广域信号时变时滞影响的大型双馈风力发电系统附加鲁棒阻尼控制[J]. 电工技术学报, 2014, 29(4): 246-255. [9] 何金平, 毛承雄, 陆继明, 等. 电压源型全控器件励磁控制策略[J]. 电工技术学报, 2012, 27(12): 240-247, 263. [10] 田明杰, 吴俊勇, 熊飞, 等. 应用于混合储能的组合级联式多端口变流器拓扑结构研究[J]. 电力系统保护与控制, 2014, 42(22): 81-89. [11] 唐芬, 吴丹, 周啸, 等. 分布式多变流器型微电网无互联线潮流控制[J]. 电网技术, 2014, 38(9): 2363-2370. [12] Ekanayake J B, Holdsworth L, Wu X G.Dynamic modeling of doubly fed induction generator wind turbines[J]. IEEE Transactions on Power Systems, 2003, 18(2): 803-809. [13] Ortega Á, F Milano. Generalized model of VSC-based energy storage systems for transient stability analysis[J]. IEEE Transactions on Power Systems, 2015(99): 1-12. [14] 王毅, 张祥宇, 李和明, 等. 永磁直驱风电机组对系统功率振荡的阻尼控制[J]. 电工技术学报, 2012, 27(12): 162-171. [15] 李辉, 陈宏文, 杨超, 等. 双馈风电场模糊附加阻尼控制策略[J]. 中国电机工程学报, 2013, 33(31): 51-57. [16] Alivirdizadeh M, Tabatabaei N M, Demiroren A, et al.Transient stability improving of power system including DFIG based wind farm by using FUZZY logic controller[J]. International Journal on Technical and Physical Problems of Engineering, 2012, 4(10): 66-73. [17] Kundur P.Power system stability and control[M]. New York: McGraw-Hill, 1994. |
|
|
|