|
|
Partial discharge pattern recognition using hidden Markov models based on the entropy lifting wavelet coefficients |
Qian Shuaiwei1, Peng Yanjun1, Zhou Zemin1, Chen Jianxi1, Tang Ming2 |
1. Guangxi Power Grid Co., Ltd, Guilin Power Supply Bureau, Guilin 541002; 2. Zhuhai Huanet Technology Co., Ltd, Zhuhai, Guangdong 510382 |
|
|
Abstract For the detection of partial discharge in cables, this paper presents a recognition method based on lifting wavelet packet coefficient entropy and hidden Markov model. Based on the theory of lifting wavelet packet and information entropy, the wavelet energy spectrum entropy and coefficient entropy of discharge signal are extracted as eigenvalues. The extracted eigenvectors are input into the hidden Markov model for training, and the optimal training model is obtained. Artificial simulation of defects on cable body, discharges generated by different discharge models are identified and tested by using the proposed algorithm, traditional wavelet coefficient entropy and BP neural network respectively. The results show that the method is superior to the traditional wavelet and BP neural network in recognition accuracy and algorithm execution efficiency.
|
Received: 09 March 2020
|
|
|
|
Cite this article: |
Qian Shuaiwei,Peng Yanjun,Zhou Zemin等. Partial discharge pattern recognition using hidden Markov models based on the entropy lifting wavelet coefficients[J]. Electrical Engineering, 2020, 21(10): 93-102.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I10/93
|
[1] 李海英, 李玄, 宋建成. 基于雷达图法的矿用高压电缆安全预警模型[J]. 煤炭学报, 2012, 37(11): 1941-1946. [2] 唐明, 梁得亮, 王青山, 等. 矿用电缆局部放电监测的最优二代小波包基降噪[J]. 西安交通大学学报, 2013, 47(12): 32-37, 76. [3] Tang Ming, Sun Jianyang, Guo Jianzhao, et al.Time domain modeling and simulation of partial discharges on MV cables by vector fitting method[J]. IEEE Transactions on Magnetics, 2014, 50(2). [4] Sahoo N C, Salama M, Bartnikas R.Trends in partial discharge pattern classification: a survey[J]. Diele- ctrics and Electrical Insulation, IEEE Transactions on, 2005, 12(2): 248-264. [5] 周凯, 吴广宁, 吴建东, 等. 基于局部放电统计参量的脉冲电压下绝缘老化分析[J]. 电工技术学报, 2008, 23(4): 6-12. [6] 崔青, 方欣, 张志磊, 等. 基于模糊c均值算法和改进归一化的变压器故障诊断方法[J]. 电气技术, 2019, 20(11): 46-48, 67. [7] Salama M A, Bartnikas R.Determination of neural- network topology for partial discharge pulse pattern recognition[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 446-456. [8] 陈敬德, 李峰, 孙源文, 等. 基于KNN和MSR的局部放电模式识别研究[J]. 电气技术, 2018, 19(1): 10-14. [9] Su M S, Chen J F, Lin Y H, et al.Identification of partial discharge location in a power cable using fuzzy inference system and probabilistic neural networks[J]. Electric Power Components and Systems, 2012, 40(6): 613-627. [10] 淡文刚, 陈祥训, 郑健超. 采用小波分析与神经网络技术的局部放电统计识别方法[J]. 中国电机工程学报, 2002, 22(9): 1-5, 18. [11] Chang C S, Jin J, Chang C, et al.Separation of corona using wavelet packet transform and neural network for detection of partial discharge in gas-insulated sub- stations[J]. IEEE Transactions on Power Delivery, 2005, 20(2, 2): 1363-1369. [12] 毛颖科, 关志成, 王黎明, 等. 基于BP人工神经网络的绝缘子泄漏电流预测[J]. 中国电机工程学报, 2007, 27(27): 7-12. [13] 李立学. GIS局部放电超高频包络检测研究[D]. 上海: 上海交通大学, 2009. [14] Evagorou D, Kyprianou A, Lewin P L, et al.Feature extraction of partial discharge signals using the wavelet packet transform and classification with a pro- babilistic neural network[J]. IET Science Measurement & Technology, 2010, 4(3): 177-192. [15] 唐炬, 谢颜斌, 周倩, 等. 基于最优小波包变换与核主分量分析的局部放电信号特征提取[J]. 电工技术学报, 2010, 25(9): 35-40. [16] 杨丽君, 廖瑞金, 孙才新, 等. 矢量量化在局部放电模式识别中的应用[J]. 中国电机工程学报, 2009, 29(31): 122-127. [17] 汪可, 杨丽君, 廖瑞金, 等. 基于离散隐式马尔科夫模型的局部放电模式识别[J]. 电工技术学报, 2011, 26(8): 205-212. [18] 唐炬, 李伟, 欧阳有鹏. 采用小波变换奇异值分解方法的局部放电模式识别[J]. 高电压技术, 2010, 36(7): 1686-1691. [19] 杨洪, 古世甫, 谭乐. 基于神经网络和证据理论的局部放电多特征融合识别[J]. 水电能源科学, 2012, 30(11): 184-187, 166. [20] 何巨龙, 王根平, 刘丹, 等. 配电系统谐波扰动的定位与识别研究[J]. 电气技术, 2016, 17(12): 25-30. |
|
|
|