|
|
Review and prospect of data cleaning in renewable energy power prediction |
Wu Jiahui1,2, Shao Zhenguo1,2, Yang Shaohua1,2, Xiao Songyong3, Wu Guochang4 |
1. College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108; 2. Fujian Smart Electrical Engineering Technology Research Center,Fuzhou 350108; 3. State Grid Putian Electric Power Supply Company,Putian,Fujian 351100; 4. Putian Li Yuan Group Company,Putian,Fujian 351100 |
|
|
Abstract Power prediction is an essential technique for the safe and stable use of renewable energy, which can improve the control performance when the penetration of renewable energy power generation in the system becomes significant. However, large amounts of abnormal data lead to a decrease in prediction accuracy. Through efficient data cleaning, the precision of power prediction can be improved. Therefore, this paper focuses on the review and prospect of data cleaning for the renewable energy power prediction. Firstly, this paper introduces the methods of data cleaning. After the abnormal data are classified, the basic ideas and the application conditions of data cleaning are elaborated and analyzed from two perspectives, which are the rejection of the abnormal values and reconstruction of the missing values. Finally, the key problems in data cleaning for renewable energy are proposed.
|
Received: 22 April 2020
|
|
|
|
Cite this article: |
Wu Jiahui,Shao Zhenguo,Yang Shaohua等. Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical Engineering, 2020, 21(11): 1-6.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I11/1
|
[1] 王锡凡,邵成成.助力能源革命的多频率电力系统[J].中国电机工程学报,2018,38(21):6195-6204,6481. [2] 国家能源局.2019年一季度风电并网运行情况[J].中国能源,2019(5):4. [3] 郭茜,匡洪海,王建辉,等.单机风电功率人工智能预测模型综述[J].电气技术,2020,21(2):1-6. [4] 孙祥晟,陈芳芳,贾鉴,等.基于经验模态分解的神经网络光伏发电预测方法研究[J].电气技术,2019,20(8):54-58. [5] 赖昌伟,黎静华,陈博,等.光伏发电出力预测技术研究综述[J].电工技术学报,2019,34(6):1201-1217. [6] 沈小军,周冲成,吕洪.基于运行数据的风电机组间风速相关性统计分析[J].电工技术学报,2017,32(16):265-274. [7] 李丽,叶林.风速数据奇异点辨识研究[J].电力系统保护与控制,2011,39(21):92-97. [8] Xiao Qijun,Huang Wei,Luo Zhonghui,et al.Wavelet transform singularity detection technology applied in the seabed sediment sound velocity measurement[C]//2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA),2017:1050-1054. [9] 朱倩雯,叶林,赵永宁,等.风电场输出功率异常数据识别与重构方法研究[J].电力系统保护与控制,2015,43(3):38-45. [10] Shen Xiaojun,Fu Xuejiao,Zhou Chongcheng.A com-bined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm[J].IEEE Transactions on Sustainable Energy,2019,10(1):46-54. [11] 王雷,张瑞青,盛伟,等.基于支持向量机的回归预测和异常数据检测[J].中国电机工程学报,2009,29(8):92-96. [12] Cui Haiting.Research on eliminating abnormal big data based on PSO-SVM[C]//2018 IEEE 3rd Advanced Information Technology,Electronic and Automation Control Conference (IAEAC),2018:2460-2463. [13] Kusiak A,Zheng Haiyang,Song Zhe.Models for monitoring wind farm power[J].Renewable Energy,2009,34(3):583-590. [14] 娄建楼,胥佳,陆恒,等.基于功率曲线的风电机组数据清洗算法[J].电力系统自动化,2016,40(10):116-121. [15] Zheng Le,Wei Hu,Yong Min.Raw wind data prepro-cessing:a data-mining approach[J].IEEE Transa-ctions on Sustainable Energy,2015,6(1):11-19. [16] Sun Zexian,Sun Hexu.Stacked denoising autoencoder with density-grid based clustering method for detecting outlier of wind turbine components[J].IEEE Access,2019,7:13078-13091. [17] Dong Anfa,Zhang Chunhai.Research on abnormal data mining algorithm[C]//2017 International Con-ference on Computer Systems,Electronics and Control (ICCSEC),2017:1477-1480. [18] 沈小军,付雪姣,周冲成,等.风电机组风速-功率异常运行数据特征及清洗方法[J].电工技术学报,2018,33(14):3353-3361. [19] 陈伟,吴布托,裴喜平.风电机组异常数据预处理的分类多模型算法[J].电力系统及其自动化学报,2018,30(4):137-143. [20] Ammad M,Ramli A.Cubic B-Spline curve inter-polation with arbitrary derivatives on its data points[C]//2019 23rd International Conference in Information Visualization-Part II,2019:156-159. [21] Wang Jidong,Fan Yang,Du Xuhao.Microgrid harmonic and interharmonic analysis algorithm based on cubic spline interpolation signal Reconstru-ction[C]//IEEE PES Innovative Smart Grid Technolo-gies,2012:1-5. [22] 杨茂,翟冠强,李大勇,等.基于风速升降特性及支持向量机理论的异常数据重构算法[J].电力系统保护与控制,2018,46(16):31-37. |
|
|
|