|
|
Applications of new electronic arc extinguishing technologies in mechanical switches |
Guo Qiaoshi, Nie Jia, Wu Shikun |
Guangzhou Kingser Electronics Co., Ltd, Guangzhou 511447 |
|
|
Abstract On the basis of analyzing the shortcomings of traditional arc extinguishing technology in practical application, three new electronic arc extinguishing technologies, AST, ASD and AAE, and their practical effects are introduced. The AST and ASD technologies use electronic switches connected in parallel at both ends of the mechanical switch to form a hybrid switch with the mechanical switch. The parallel electronic switch detects the breaking of the mechanical switch and achieves the effect of extinguishing the arc of the mechanical switch in an extreme short conduction time immediately after the mechanical switch is broken. The AST technology is applied to AC arc extinguishing and the ASD is applied to DC arc extinguishing. The AAE technology is applied to DC arc extinguishing, it uses the energy storage elements connected in parallel at both ends of the load. When detecting the breaking of the mechanical switch, the energy on the energy storage elements is released at an appropriate time to reduce the electric field strength at both ends of the mechanical switch so as to extinguish the arc of the mechanical switch. The arc-extinguishing devices made by using these three arc-extinguishing technologies are independent of mechanical switches, and have been tested and verified that the three devices have good arc-extinguishing effects in their respective fields.
|
Received: 19 August 2019
Published: 27 February 2020
|
|
|
|
Cite this article: |
Guo Qiaoshi,Nie Jia,Wu Shikun. Applications of new electronic arc extinguishing technologies in mechanical switches[J]. Electrical Engineering, 2020, 21(2): 119-123.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I2/119
|
[1] Hauner F, Jeannot D, Mcneilly K, et al.Advanced AgSnO2 contact materials for current contactors[C]// Proceedings of 20th International Conference IEEE on Electrical Contacts, 2000: 19-24. [2] 张昆华, 管伟明, 孙加林, 等. AgSnO2电接触材料的制备和直流电弧侵蚀形貌特征[J]. 稀有金属材料与工程, 2005, 34(6): 924-927. [3] 王海涛, 王景芹, 赵靖英. Ag/SnO2-La2O3-Bi2O3触头材料的研究[J]. 稀有金属材料与工程, 2005, 34(10): 1666-1668. [4] 刘帼巾, 陆俭国, 王海涛, 等. 接触器式继电器的失效分析[J]. 电工技术学报, 2011, 26(1): 81-85. [5] 刘建强, 陈爱峰, 闫一凡, 等. 高速列车电磁接触器可靠性评估方法[J]. 电工技术学报, 2018, 33(增刊2): 461-470. [6] 姚芳, 陆俭国, 郑建荣, 等. 交流接触器可靠性研究概况[J]. 低压电器, 2007(11): 1-5. [7] 彭搏, 肖登明. 断路器电寿命的在线监测[J]. 电网与清洁能源, 2012, 28(12): 38-41, 50. [8] 胡杰, 王莉, 穆建国. 直流固态断路器现状及应用前景[J]. 电工文摘, 2010, 37(2): 48-51. [9] 张继辉, 李瑛, 陈雅萍, 等. 交流固态继电器及其使用可靠性[J]. 电气时代, 2005(7): 132-133. [10] 唐勇, 汪波, 陈明, 等. 高温下的IGBT可靠性与在线评估[J]. 电工技术学报, 2014, 29(6): 17-23. [11] 黄润华, 钮应喜, 杨霏, 等. 碳化硅MOSFET栅氧化层可靠性研究[J]. 智能电网, 2015, 3(2): 99-102. [12] 王其平. 电器电弧理论[M]. 北京: 机械工业出版社, 1982. [13] Ahmethodzic A, Kapetanovic M, Sokolija K, et al.Linking a physical arc model with a black box arcmodel and verification[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1029-1037. [14] 朱世明, 袁召, 赵来军, 等. 真空电弧研究进展综述[J]. 电工材料, 2012(1): 38-43. [15] 刘源, 汲胜昌, 祝令瑜, 等. 直流电源系统中直流电弧特性及其检测方法研究[J]. 高压电器, 2015, 51(2): 24-29. [16] 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9. [17] 翟国富, 薄凯, 周学, 等. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 251-263. [18] 薄凯, 乔鑫磊, 陈默, 等. 直流大功率继电器分断电弧特性试验研究[J]. 电器与能效管理技术, 2015(15): 7-10. [19] Sekihawa J, Kubono T.Effect of permanent magnets embedded in electrical contacts mounted on electro- magnetic relays[J]. IEICE Technical Report, 2010, 110(270): 49-52. [20] 曹云东, 刘阳, 刘晓明, 等. 不同旋气槽数对SF6断路器三维气流场影响[J]. 电工技术学报, 2010, 25(9): 74-79. [21] 贾申利, 赵虎, 李兴文, 等. SF6替代气体灭弧性能的研究进展综述[J]. 高压电器, 2011, 47(11): 87-91, 97. |
|
|
|