|
|
A method for calculating ice thickness based on mechanical analysis |
Tang Jianbin, Lin Ruiquan |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract In order to reduce the calculation error of icing thickness of transmission line, a calculation method of icing thickness based on mechanical analysis is proposed. Considering the variation of vertical specific load, the method uses the monitoring data of tension and inclination angle of insulator string as input, and calculates the icing thickness according to the state equation of overhead transmission line and the balance equation of tower mechanics. In order to reduce the calculation deviation caused by the stability of monitoring data, the historical monitoring data without icing are used to modify the specific load of the conductor, and then the ice thickness of the conductor is calculated. Finally, the actual monitoring data of a certain line are used to verify the results. Compared with the traditional method of geometric decomposition, the calculation error of ice thickness proposed in this paper is small, which meets the engineering requirements.
|
Received: 20 September 2019
Published: 16 April 2020
|
|
|
|
[1] 蒋兴良, 韩兴波, 胡玉耀, 等. 冰棱生长对绝缘子覆冰过程的影响分析[J]. 电工技术学报, 2018, 33(9): 2089-2096. [2] 黄绪勇, 聂鼎, 何勇, 等. 基于WebGIS的架空输电线路防灾减灾系统的研究及应用[J]. 电气技术, 2019, 20(2): 79-84. [3] 董德杰. 直线杆塔两侧导线覆冰厚度的改进称重法[J]. 电气技术, 2015, 16(4): 52-55, 60. [4] Liu Hong, Wang Tianzheng, Jiang Min.Error analysis about on-line icing-monitoring device based on weighing method[C]//2016 IEEE Advanced Information Mana- gement, Communicates, Electronic and Automation Control Conference, 2016: 1-4. [5] 张志劲, 程洋, 赵佳尧, 等. XP-160绝缘子串人工与自然覆冰交流闪络特性[J]. 高电压技术, 2018, 44(9): 2777-2784. [6] 张暕, 何青. 输电线路覆冰时导线表面形状对碰撞系数的影响[J]. 电工技术学报, 2016, 31(13): 209-217. [7] 蒋兴良, 姜方义, 汪泉霖, 等. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18): 4408-4418. [8] 李红坤, 陈芳芳, 高鑫. 架空线路覆冰研究现状综述[J]. 电气技术, 2017, 18(10): 13-15. [9] 郝艳捧, 蒋晓蓝, 阳林, 等. 基于图像分割评估运行绝缘子自然覆冰程度[J]. 高电压技术, 2017, 43(1): 285-292. [10] 黄新波, 王玉鑫, 朱永灿, 等. 基于遗传算法与模糊逻辑融合的线路覆冰预测[J]. 高电压技术, 2016, 42(4): 1228-1235. [11] 胡琴, 于洪杰, 徐勋建, 等. 分裂导线覆冰扭转特性分析及等值覆冰厚度计算[J]. 电网技术, 2016, 40(11): 3615-3620. [12] Jiang Xingliang, Xiang Ze, Zhang Zhijin, et al.Predictive model for equivalent ice thickness load on overhead transmission lines based on measured insu- lator string deviations[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1659-1665. [13] 向泽. 基于输电线路动态荷载的导线等值冰厚计算模型研究[D]. 重庆: 重庆大学, 2014. [14] 姚陈果, 张磊, 李成祥, 等. 基于力学分析和弧垂测量的导线覆冰厚度测量方法[J]. 高电压技术, 2013, 39(5): 1204-1209. [15] 黄良, 虢韬, 彭赤, 等. 基于输电线路垂直档距变化特征的等值覆冰厚度模型研究[J]. 水电能源科学, 2018, 36(3): 176-179. [16] 熊先仁, 郑和东, 张小峰. 架空输配电线路设计[M]. 北京: 中国电力出版社, 2011. [17] 邵天晓. 架空送电线路的电线力学计算[M]. 北京: 水利电力出版社, 1987. [18] 王玉鑫. 基于遗传算法与模糊逻辑融合的线路覆冰预测模型[D]. 西安: 西安工程大学, 2016. [19] 阳林, 郝艳捧, 黎卫国, 等. 架空输电线路在线监测覆冰力学计算模型[J]. 中国电机工程学报, 2010, 30(19): 100-105. |
|
|
|