|
|
Study on the influence of dry band on electric field distribution of substations pillar insulators |
Xiang Yitong, Wang Yonghua |
Shibei Electric Power Supply Branch Company, State Grid Chongqing Electric Power Company,Chongqing 401147 |
|
|
Abstract The surface area of post insulator in substation is seriously polluted. In fog or drizzle weather, it is easy to form a dry belt, which leads to frequent flashover accidents. In order to study the causes of the formation of the dry belt on the surface of the post insulator of the substation and its influence on the distribution of the electric field along the surface, the insulator simulation model is established, and the electric field changes before and after the emergence of the pollution and the dry belt are analyzed by using the electric quasi-static field. At the same time, the area where the dry belt is easy to appear and the influence of the position and width of the dry belt on the field strength along the surface are studied. The results show that the electric field distribution on the surface of clean insulator is basically the same as that of polluted insulator, which is asymmetric “U” shape, and the electric field along the surface is basically unchanged, and pollution has little effect on the electric field distribution of insulator. The wet dirt attached to the insulator surface will form a dry belt under the drying effect of leakage current, and the thermal effect between the columns is the largest; with the increase of the width of the dry belt, the field strength of the dry belt on the column decreases gradually, while the maximum field strength of the dry belt on the upper and lower surface of the umbrella skirt increases gradually; the maximum field strength of the dry belt appears at the end of the dry belt.
|
Received: 20 January 2020
|
|
|
|
Cite this article: |
Xiang Yitong,Wang Yonghua. Study on the influence of dry band on electric field distribution of substations pillar insulators[J]. Electrical Engineering, 2020, 21(8): 87-92.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I8/87
|
[1] 丰强, 匡红刚, 田勇, 等. 化工污秽区变电站支柱绝缘子带电清洗试验及沿面电场分析研究[J]. 绝缘材料, 2019, 52(1): 78-83. [2] 杨力, 高立超, 杨志华, 等. 基于低压微安表法的特高压直流换流站多柱并联避雷器直流参考电压和泄漏电流测量方法的研究[J]. 电气技术, 2018, 19(2): 105-108. [3] 律方成, 张兆华, 汪佛池. 基于有限元的动车组高压隔离开关均压环优化设计[J]. 电工技术学报, 2016, 31(19): 218-223. [4] 肖隆恩, 李勋. 沿海地区集中表箱凝露现象分析及防治措施研究[J]. 电气技术, 2019, 20(11): 117-120. [5] 刘向实. 污秽条件下复合绝缘子电场仿真研究[J]. 电瓷避雷器, 2014(5): 31-36. [6] 谢志新. 污秽成分对瓷绝缘子表面电导性及闪络电压的影响研究[D]. 北京: 华北电力大学, 2018. [7] 王羽, 牟霖, 王万昆, 等. 附着金属体染污绝缘表面局部电弧特性研究[J]. 中国电机工程学报, 2019, 39(11): 3253-3262. [8] 刘勇, 杜伯学, 王荣亮, 等. 低气压下复合绝缘子表面干燥带放电时频特征[J]. 高电压技术, 2014, 40(8): 2348-2352. [9] 向奕同. 强风沙尘环境下车顶复合绝缘子形变特性与外绝缘放电特性研究[D]. 合肥: 合肥工业大学, 2019. [10] 张明, 祝新飞, 张达. 湿污绝缘子的温度场研究[J]. 绝缘材料, 2017, 50(10): 37-42, 47. [11] 汪沨, 廖平军, 黄俊, 等. 含污秽薄层的高压复合绝缘子表面电场计算新方法[J]. 电工技术学报, 2016, 31(10): 77-84. [12] 温定筠, 孙亚明, 王锋, 等. 750kV兰州东-平凉-乾县输电线路复合绝缘子周围电场分布仿真分析[J]. 电气技术, 2017, 18(1): 56-60. [13] 程登峰, 李明哲, 夏令志, 等. 玻璃绝缘子人工污秽模拟自然污秽试验方法研究[J]. 高压电器, 2018, 54(10): 69-75. [14] 张志劲, 张东东, 刘小欢, 等. 污秽成分对LXY4- 160绝缘子串交流闪络特性的影响[J]. 电工技术学报, 2014, 29(4): 298-305. [15] 高同虎, 胡元潮, 安韵竹, 等. 覆着藻类对110kV复合绝缘子电场分布的影响研究[J]. 绝缘材料, 2019, 52(10): 59-64. |
|
|
|