|
|
Short term electricity price forecasting based on variational mode decomposition and improved particle swarm optimization-least square support vector machine |
YANG Zhao, ZHANG Gang, ZHAO Junjie, ZHANG Hao, LIN Yicun |
Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710054 |
|
|
Abstract According to the characteristics of strong non-linearity and high volatility of electricity price series, a short-term electricity price prediction model based on variational mode decomposition (VMD) and least square support vector machine (LSSVM) optimized by improved particle swarm optimization (PSO) is proposed. First of all, VMD is used to decompose the original electricity price sequence into multiple component sequences, and LSSVM modeling and prediction is performed on each component sequence. And then, in order to improve the prediction accuracy, aiming at the problem of selecting the optimal parameters of the LSSVM prediction model, an improved particle swarm algorithm is proposed to optimize the parameters of the LSSVM model. Finally, the prediction results of each component are integrated to obtain the final electricity price prediction value. In order to verify the effectiveness of the proposed model, the US PJM market electricity price data is used as an example to analyze and compare with other forecasting models. It shows that the proposed model can predict short-term electricity prices well.
|
Received: 10 March 2021
|
|
|
|
Cite this article: |
YANG Zhao,ZHANG Gang,ZHAO Junjie等. Short term electricity price forecasting based on variational mode decomposition and improved particle swarm optimization-least square support vector machine[J]. Electrical Engineering, 2021, 22(10): 11-16.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/11
|
[1] 魏勤, 陈仕军, 黄炜斌, 等. 利用随机森林回归的现货市场出清价格预测方法[J]. 中国电机工程学报, 2021, 41(4): 1360-1367, 1542. [2] 赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41(1): 135-146, 404. [3] 刘威. 互联电力市场的区域电价预测[D]. 武汉: 华中科技大学, 2018. [4] 周明, 严正, 倪以信, 等. 含误差预测校正的ARIMA电价预测新方法[J]. 中国电机工程学报, 2004, 24(12): 67-72. [5] 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析的短期电价预测[J]. 电力系统保护与控制, 2019, 47(1): 115-122. [6] 任远. 基于回声状态网络的电力市场电价预测[J]. 电力系统保护与控制, 2016, 44(11): 111-115. [7] 何耀耀, 刘瑞, 撖奥洋. 基于实时电价与支持向量分位数回归的短期电力负荷概率密度预测方法[J].中国电机工程学报, 2017, 37(3): 768-776. [8] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术, 2018, 42(12): 4045-4052. [9] 王贺, 胡志坚, 张翌晖, 等. 基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J]. 电工技术学报, 2014, 29(4): 237-245. [10] 夏书悦, 董心怡. 基于经验模态分解法优化支持向量机模型的日前风电功率组合预测[J]. 电气技术, 2020, 21(3): 11-15. [11] 张宁. 基于CEEMD-SSA-ELM的短期电价集成预测模型[J]. 贵州大学学报(自然科学版), 2020, 37(5): 82-88. [12] 田中大, 李树江, 王艳红, 等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015, 30(9): 112-120. [13] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. [14] 蒋锋, 何佳琪, 曾志刚, 等. 基于分解-优化-集成学习方法的电价预测[J]. 中国科学(信息科学), 2018, 48(10): 1300-1315. [15] 王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45-52. [16] ZHANG Gang, LIU Hongchi, LI Pingli, et al.Load prediction based on hybrid model of VMD-mRMR- BPNN-LSSVM[J]. Complexity, 2020(4): 6940786. [17] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182. [18] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318. [19] 赵倩, 陈芳芳, 甘露. 基于改进粒子群算法优化支持向量机的风电功率预测[J]. 电气技术, 2020, 21(12): 12-16. [20] 范曼萍, 周冬. 基于改进粒子群优化LS-SVM的短期风速预测[J]. 电力学报, 2020, 35(2): 123-128, 142. |
|
|
|