|
|
Research on additional winding parameters of large-capacity three-phase heart-shaped transformer |
CHAO Xuewei, YOU Jingzheng, GAO Yachuan, TIAN Chengwen, CHAI Mingliang |
Shihezi University, Shihezi, Xinjiang 832000 |
|
|
Abstract With the construction of ultra-high voltage lines, large-capacity transformers have been widely used. In order to improve the reliability of power supply, Yy connections with neutral points that is not grounded is often used in large-capacity transformers. However, this will cause the third harmonic voltage with large amplitude in the output induced electromotive force of the winding, which endangers the safe operation of the power system. To solve this problem, a set of additional windings is added to the transformer. As the third winding of the transformer, the additional winding has the function of providing a path for the third harmonic current and reducing the aberration rate of the induced electromotive force at the output of the transformer. This article uses Ansys Maxwell finite element simulation software to calculate the transformer core loss, secondary side induced electromotive force and output power when the transformer with additional winding Yy is connected with rated load. Through the differential setting of the number of turns and positions of the additional windings, the best additional winding parameters are obtained by comparison. The finite element simulation results prove that when the additional winding is delta connection, the capacity is one-fifth of the transformer capacity, and the distribution position is high-additional-low, the transformer core loss is reduced, and the third harmonic component in the output induced electromotive force is significantly reduced.
|
Received: 12 April 2021
|
|
|
|
Cite this article: |
CHAO Xuewei,YOU Jingzheng,GAO Yachuan等. Research on additional winding parameters of large-capacity three-phase heart-shaped transformer[J]. Electrical Engineering, 2021, 22(10): 28-33.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/28
|
[1] 陈生栋, 孙海峰. 特高压换流站三柱四绕组结构换流变压器谐波抑制研究[J]. 电网技术, 2021, 45(8): 3155-3165. [2] 赵珩, 杨耀杰, 苗堃, 等. 油浸式电力变压器绝缘纸老化特征量的研究进展[J]. 变压器, 2020, 57(9): 38-43. [3] 井永腾, 王欢, 李岩. 三相油浸变压器新型磁路设计与性能分析[J]. 电机与控制学报, 2019, 23(3): 26-33. [4] 汪力, 徐煜, 刘忏斌. 三相五柱式整流变压器的磁路与中点电位偏移[J]. 轻金属, 2018(3): 60-64. [5] 丁煜. 平衡绕组在变压器中的作用及接线方式研究[J]. 黑龙江科技信息, 2017(18): 25. [6] 严静, 邵振国. 电能质量谐波监测与评估综述[J]. 电气技术, 2020, 21(7): 1-7. [7] 涂春鸣, 李庆, 郭祺, 等. 具备电压质量调节能力的串并联一体化多功能变流器[J]. 电工技术学报, 2020, 35(23): 4852-4863. [8] 郭峰, 刘燕, 肖明, 等. 三相三柱式卷铁心磁路分析[J]. 变压器, 2015, 52(3): 11-15. [9] 薛天水. 超远距离输电方式对比研究[D]. 上海: 上海电力学院, 2015. [10] 王灿, 罗隆福, 陈跃辉, 等. 220kV变压器附加绕组专接滤波器的谐波治理方案[J]. 电工技术学报, 2015, 30(1): 186-194. [11] 李崇. 直流偏磁下变压器空载电流及损耗的研究[D].沈阳: 沈阳工业大学, 2011. [12] 吴立增. 变压器状态评估方法的研究[D]. 保定: 华北电力大学, 2005. [13] 顾晓安, 沈密群, 朱振江, 等. 变压器铁心振动和噪声特性的试验研究[J]. 变压器, 2003(4): 1-4. [14] 胡文平, 尹项根, 张哲. 电气设备在线监测技术的研究与发展[J]. 华北电力技术, 2003(2): 23-26, 29. [15] 严一士. 平衡绕组在变压器中的作用和理论[J]. 南工学报, 1963(2): 195-206. [16] 汤蕴璆. 电机学[M]. 北京: 机械工业出版社, 2014. [17] 高璐, 徐策, 董光冬, 等. 基于电磁仿真软件的平面变压器共模电磁干扰建模方法及其应用[J]. 电工技术学报, 2020, 35(24): 5057-5063. [18] 宋杰. 电能质量监测系统的设计实现和车载应用[J].电气技术, 2020, 21(11): 50-56. |
|
|
|