|
|
Unit commitment rolling optimization of power system with a large-scale wind farm considering time-varying reserve requirement |
GUI Qianjin1, HUANG Xiangqian1, MAI Li2, XU Ruixiang1 |
1. Anqing Power Supply Company, State Grid Anhui Electric Power Co., Ltd, Anqing, Anhui 246003; 2. State Grid Anhui Electric Power Co., Ltd, Hefei 230022 |
|
|
Abstract The fluctuation and unpredictability of wind power bring difficulties to power system security and economic dispatching. The unit combination of power system including wind power needs to arrange thermal power to reserve sufficient rotating reseve capacity to reduce the impact of wind power fluctuation and prediction error on power system. In this paper, according to the strong time-varying characteristics of wind power prediction error, a rolling optimization model of unit combination in power system with large-scale wind power considering time-varying standby demand is proposed. The model fully considers the time-varying characteristics of wind power prediction error and optimizes the rolling operation scheme of system unit combination. The example analysis proves the effectiveness and feasibility of the model. The analysis shows that the model can meet the time-varying standby demand of the system and ensure the operation safety and economy of the system at different time scales.
|
Received: 15 April 2021
|
|
|
|
Cite this article: |
GUI Qianjin,HUANG Xiangqian,MAI Li等. Unit commitment rolling optimization of power system with a large-scale wind farm considering time-varying reserve requirement[J]. Electrical Engineering, 2021, 22(10): 34-42.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/34
|
[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021(5): 1-6. [2] 白桦, 王正用, 李晨, 等. 面向电网侧、新能源侧及用户侧的储能容量配置方法研究[J]. 电气技术, 2021, 22(1): 8-13. [3] VOS K D, DRIESEN J.Dynamic operating reserve strategies for wind power integration[J]. IET Renewable Power Generation, 2014, 8(6): 598-610. [4] ZHAO Changfei, WAN Can, SONG Yonghua.Oper- ating reserve quantification using prediction intervals of wind power: an integrated probabilistic forecasting and decision methodology[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3701-2714. [5] 王松岩, 李碧君, 于继来, 等. 风速与风电功率预测误差概率分布的时变特性分析[J]. 电网技术, 2013, 37(4): 967-973. [6] CHEN C L.Optimal wind-thermal generating unit commitment[J]. IEEE Transactions on Energy Con- version, 2008, 23(1): 273-280. [7] 陈庆攀, 刘洋, 许立雄, 等. 含风电的电力系统鲁棒优化调度[J]. 电测与仪表, 2020, 57(8): 78-84. [8] 刘杰, 廖胜利, 刘本希, 等. 峰谷时段模糊识别的一库多级式梯级水电站群短期调度方法[J]. 电网技术, 2019, 43(11): 4080-4086. [9] LI Peng, WANG Zixuan, WANG Nan, et al.Stochastic robust optimal operation of community integrated energy system based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021(128): 106735. [10] PAPPALA V S, ERLICH I, ROHRIG K, et al.A stochastic model for the optimal operation of a wind-thermal power system[J]. IEEE Transactions on Power Systems, 2009, 24(2): 940-950. [11] CHEN Sheng, WEI Zinong, SUN Guoqiang, et al.Adaptive robust day-ahead dispatch for urban energy systems[J]. IEEE Transactions on Industrial Elec- tronics, 2019, 66(2): 1379-1390. [12] 吴晓刚, 孙荣富, 乔颖, 等. 基于风电场功率特性的风电预测误差分布估计[J]. 电网技术, 2017, 41(6): 1801-1807. [13] 丁华杰, 宋永华, 胡泽春, 等. 基于风电场功率特性的日前风电预测误差概率分布研究[J]. 中国电机工程学报, 2013, 33(34): 136-144. [14] ATWA Y M, El-SAADANY E F, SALAMA M M A, et al. Optimal renewable resources mix for distribution system energy loss minimization[J]. IEEE Transactions on Power Systems, 2010, 25(1): 360-370. [15] BILLINTON R, CHOWDHURY A A.Incorporation of wind energy conversion systems in conventional generating capacity adequacy assessment[J]. IEE Pro- ceedings C-Generation Transmission and Distribution, 1992, 139(1): 47-56. [16] 孙书凯, 董存, 王铮, 等. 考虑不同风能特征的风电中长期电量预测方法[J]. 高电压技术, 2021(4): 1224-1232. [17] 金国彬, 潘狄, 陈庆, 等. 考虑源荷不确定性的直流配电网模糊随机日前优化调度[J/OL]. 电工技术学报: 1-12[2021-04-15]. https://doi.org/10.19595/j.cnki.1000-6753.tces.201295. [18] CARRION M, ARROYO J M.A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transa- ctions on Power Systems, 2006, 21(3): 1371-1378. [19] 汪洋, 钟海旺, 夏清, 等. 机组检修与运行组合的协同优化[J]. 电力系统自动化, 2014, 38(21): 26-31, 76. [20] CHEN C L, WABG S C.Branch-and-bound scheduling for thermal generating units[J]. IEEE Transactions on Energy Conversion, 1993, 8(2): 184-189. |
|
|
|