|
|
Optimization of line derivative protection in Belo Monte phase two ultra high voltage DC project |
GONG Fei, LI Lin, ZHAO Senlin, ZOU Qiang, WANG Daquan |
NR Electric Co., Ltd, Nanjing 211102 |
|
|
Abstract There is a very obvious mutual inductance between UHVDC bipolar long lines. When one pole line fails, the voltage of the other pole line will drop to a lower value at a faster speed due to mutual inductance. This phenomenon is basically the same as the voltage variation law of DC line when grounding fault occurs, which is easy to cause misoperation of DC line derivative protection. Firstly, this paper deeply analyzes the misoperation mechanism of DC line derivative protection. Taking advantage of the difference in recovery characteristics between the voltage drop caused by mutual inductance of bipolar line and the voltage drop caused by actual grounding fault, a blocking voltage derivative protection strategy considering the influence of mutual inductance is proposed, and the strategy is tested and verified on the real-time digital simulation test platform. The effectiveness of the proposed strategy is proved, which provides a reference for other DC projects.
|
Received: 16 April 2021
|
|
|
|
Cite this article: |
GONG Fei,LI Lin,ZHAO Senlin等. Optimization of line derivative protection in Belo Monte phase two ultra high voltage DC project[J]. Electrical Engineering, 2021, 22(11): 36-41.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I11/36
|
[1] 张福轩, 邹强, 赵森林, 等. 特高压直流双极线路间互感影响及控制策略改进[J]. 电网技术, 2017, 41(11): 3547-3552. [2] 王亚涛, 吴彦雄, 李俊霞, 等. HVDC中直流线路的互感机理及其对控制系统影响的研究[J]. 电力系统保护与控制, 2015, 43(12): 28-33. [3] 王德林, 吕鹏飞, 阮思烨, 等. 特高压直流双极输电线路互感影响及对策研究[J]. 中国电机工程学报, 2015, 35(17): 4353-4360. [4] 李林, 龚飞, 张庆武, 等. 美丽山特高压直流II期工程双极线间的互感影响及控制策略优化研究[C]//超/特高压直流输电技术会议论文集, 济南, 2018: 89-94. [5] 王明新, 张强. 直流输电系统接地极电流对交流电网的影响分析[J]. 电网技术, 2005, 29(3): 9-14. [6] 陶瑜. 直流输电控制保护系统分析及应用[M]. 北京:中国电力出版社, 2015. [7] 石岩, 韩伟, 张民, 等. 特高压直流输电工程控制保护系统的初步方案[J]. 电网技术, 2007, 31(2): 11-15. [8] 张民, 石岩, 韩伟. 特高压直流保护动作策略的研究[J]. 电网技术, 2007, 31(10): 10-16. [9] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [10] 浙江大学发电教研组. 直流输电[M]. 2版. 北京: 水利电力出版社, 1985. [11] 何仰赞. 电力系统分析(上册)[M]. 3版. 武汉: 华中科技大学出版社, 2001. [12] 王海军, 吕鹏飞, 曾南超, 等. 贵广直流输电工程直流线路故障重启动功能研究[J]. 电网技术, 2006, 30(23): 32-35. [13] 周红阳, 刘映尚, 余江, 等. 直流输电系统再启动功能改进措施[J]. 电力系统自动化, 2008, 32(19): 104-107. [14] 李佳曼, 蔡泽祥, 李晓华, 等. 直流系统保护对交流故障的响应机理与交流故障引发的直流系统保护误动分析[J]. 电网技术, 2015, 39(4): 953-960. [15] 李新年, 吕鹏飞, 杨鹏, 等. 同塔架设直流线路的相互影响研究[J]. 电网技术, 2012, 36(11): 222-228. [16] 戴志辉, 刘宁宁, 何永兴, 等. 基于直流滤波环节暂态能量比的高压直流线路纵联保护[J]. 电工技术学报, 2020, 35(9): 1985-1998. [17] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. [18] 高海龙, 卿俊杰. 高压直流电力线路分布参数计算分析[J]. 电气技术, 2019, 20(9): 69-72. [19] 蒋智宇, 古智鹏, 胡杰. 兴安直流纵差保护策略优化研究[J]. 电气技术, 2020, 21(12): 68-73. [20] 苗瑜, 贾轩涛, 王永胜, 等. 宾金、灵绍特高压直流保护三取二功能配置的应用研究[J]. 电气技术, 2019, 20(10): 92-98. |
|
|
|