|
|
Partial discharge diagnosis method of gas insulated transmission line based on vibration signal |
CHEN Xuan1, WANG Lixian2, ZHU Chao1, MA Hongzhong2 |
1. Maintenance Branch Company, State Grid Jiangsu Electric Power Co., Ltd, Nanjing 211102; 2. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100 |
|
|
Abstract In order to identify and diagnose partial discharge defects in gas insulated transmission line (GIL), a partial discharge defect diagnosis method based on 1.5D energy spectrum and particle swarm optimization-extreme learning machine (PSO-ELM) is proposed. By calculating the 1.5D energy spectrum of GIL abnormal vibration signal caused by partial discharge, the energy fluctuation characteristics of GIL abnormal vibration caused by different types of discharge are obtained. Secondly, the PSO-ELM model is constructed, and the 1.5D energy spectrum is used as the feature to identify and diagnose the partial discharge fault of GIL. Finally, through the comparison of different methods, the advantage of the proposed method is verified, which provides the basis for the safe and stable operation of GIL in the power transmission and distribution system.
|
Received: 15 July 2021
|
|
|
|
Cite this article: |
CHEN Xuan,WANG Lixian,ZHU Chao等. Partial discharge diagnosis method of gas insulated transmission line based on vibration signal[J]. Electrical Engineering, 2021, 22(12): 34-39.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I12/34
|
[1] 侯志强, 郭若琛, 李军浩. 直流电压下SF6/N2混合气体沿面局部放电特性[J]. 电工技术学报, 2020, 35(14): 3087-3096. [2] 李鹏, 颜湘莲, 王浩, 等. 特高压交流GIL输电技术研究及应用[J]. 电网技术, 2017, 41(10): 3161-3167. [3] 杨勇, 叶瑞, 王洪川. 气体绝缘封闭金属开关设备与气体绝缘输电线路应力分类及其校核标准比较[J]. 电气技术, 2020, 21(12): 87-91, 101. [4] COOKSON A H.Electrical breakdown for uniform fields in compressed gases[J]. Proceedings of the Institution of Electrical Engineers, 1970, 117(1): 269-280. [5] 王鹏, 赵政嘉, 刘雪山, 等. 电力电子设备中的电气绝缘问题[J]. 高电压技术, 2018, 44(7): 2309-2322. [6] 王鹏, 周婉亚, 王科镜, 等. 正弦和重复方波电压下变频电机绝缘局部放电特性对比[J]. 高电压技术, 2016, 42(12): 3895-3900. [7] 刘宇舜, 程登峰, 夏令志, 等. 基于单通道盲源分离算法的局部放电特高频信号去噪方法[J]. 电工技术学报, 2018, 33(23): 5625-5636. [8] 王鹏, 刘玉婷, 邹阳, 等. TEV和超声波检测法在开关柜局部放电检测中的应用评述[J]. 高压电器, 2020, 65(10): 75-83. [9] 常晨, 刘兰荣, 卢美林, 等. 并联电抗器等效模型的振动噪声特性试验研究[J]. 电气技术, 2019, 20(2): 37-41, 47. [10] 马速良, 武建文, 袁洋, 等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报, 2020, 35(增刊2): 421-431. [11] 臧旭, 马宏忠, 吴金利, 等. 基于改进集总经验模态近似熵的GIS放电故障诊断[J]. 高压电器, 2020, 56(6): 129-137. [12] 李凯, 许洪华, 马宏忠, 等. GIS针尖类局部放电引起的振动特性研究[J]. 智慧电力, 2016, 44(9): 80-84. [13] 孙秋芹, 罗宸江, 王峰, 等. 直流GIL导体表面金属颗粒跳跃运动特性研究[J]. 电工技术学报, 2018, 33(22): 5206-5216. [14] 律方成, 刘宏宇, 阴凯, 等. 直流GIL不均匀场中金属微粒运动的数值模拟及放电特性分析[J]. 中国电机工程学报, 2017, 37(10): 2798-2806. [15] 王健, 李庆民, 李伯涛, 等. 考虑非弹性随机碰撞与SF6/N2混合气体影响的直流GIL球形金属微粒运动行为研究[J]. 中国电机工程学报, 2015, 35(15): 3971-3978. [16] 吕忠, 周强, 周琨, 等. 基于遗传算法改进极限学习机的变压器故障诊断[J]. 高压电器, 2015, 51(8): 49-53. [17] 黄辉敏, 王飞风, 苏毅, 等. 基于LMD和SVM的高压断路器弹簧操动机构状态异常检测方法研究[J]. 高压电器, 2020, 56(5): 243-248. [18] 张利, 屈斌, 王永宁, 等. GIS壳体振动机理和局部放电优化诊断与应用[J/OL]. 中国电力, https://kns.cnki.net/kcms/detail/11.3265.TM.20200403.1208.012.html. |
|
|
|