|
|
Research on constant current and constant voltage wireless charging system of electric vehicle based on hybrid compensation of bilateral LCL and LCC |
JI Xinzhe, ZHOU Wanshan, LIU Jiufu, PAN Shengyun, KONG Fang |
College of Energy and Electrical Engineering, Hohai University, Nanjing 211100 |
|
|
Abstract In order to extend the service life of wireless charging in the car battery, improve the charging efficiency and speed, meet the battery charging process of constant current charge first to a certain voltage constant voltage charging, in this paper, starting from the essential attribute of circuit, analyzes the bilateral LCC constant current output and bilateral LCL constant voltage output characteristic, studied the method of constant current constant voltage charging battery, and designs the after switching state, can keep the output current and voltage in same resonant frequency location of the charging circuit.In Simulink, the output current and voltage characteristics were observed, and a set of parameters which could realize the bilateral LCC constant current output and bilateral LCL constant voltage output weregiven. Meanwhile, the transmission power and efficiency of the scheme were studied.
|
Received: 21 June 2020
|
|
|
|
Cite this article: |
JI Xinzhe,ZHOU Wanshan,LIU Jiufu等. Research on constant current and constant voltage wireless charging system of electric vehicle based on hybrid compensation of bilateral LCL and LCC[J]. Electrical Engineering, 2021, 22(2): 17-20.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I2/17
|
[1] 梁阗. 基于LCC/S补偿拓扑的感应耦合无线电能传输研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [2] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-13, 前插1. [3] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6): 1153-1165. [4] COVIC G A, BOYS J T.Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 28-41. [5] KIM J H, LEE B S, LEE J H, et al.Development of 1MW inductive power transfer system for a high- speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. [6] BUDHIA M, BOYS J T, COVIC G A, et al.Deve- lopment of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transa- ctions on Industrial Electronics, 2013, 60(1): 318-328. [7] 陈利亚. 磁耦合谐振式电动汽车无线充电模型研究[D]. 南京: 东南大学, 2015. [8] 祝文姬, 孙跃, 高立克. 电动汽车多导轨无线供电方法[J]. 电力系统自动化, 2016, 40(18): 97-101. [9] 刘超群, 魏斌, 吴晓康, 等. 电动汽车移动式无线充电技术工程化应用研究[J]. 电网技术, 2019, 43(6): 2211-2218. [10] 孙运全, 顾加亭, 陆洋锐, 等. 基于双边LCC补偿槽恒流恒压输出的无线充电系统研究[J]. 电子器件, 2019, 42(6): 1428-1434. [11] 侯春, 朱旺, 水恒琪, 等. 基于LCL-LC/LCL混合补偿的多电动汽车恒流恒压无线充电系统特性分析[J]. 电工电能新技术, 2018, 37(11): 58-68. [12] 吉莉, 王丽芳, 廖承林, 等. 基于LCL谐振补偿网络的副边自动切换充电模式无线电能传输系统研究与设计[J]. 电工技术学报, 2018, 33(增刊1): 34-40. [13] 刘帼巾, 白佳航, 崔玉龙, 等. 基于双LCL变补偿参数的磁耦合谐振式无线充电系统研究[J]. 电工技术学报, 2019, 34(8): 1569-1579. |
|
|
|