|
|
Analysis of the characteristics of generator rotor angle control combined with energy storage |
ZHANG Zhibin, WEI Qiang |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract The generator rotor angle control can not only regulate active power to restore the frequency without intervention of the dispatching center, but also provide damping torque to suppress the inter-area low-frequency oscillation. However, the existing rotor angle control strategy uses the steam turbine to provide damping torque, which leads to the excess governing valve adjustment and reducing the life of the steam turbine. This paper uses the principle that the parallel energy storage can change the output of a generator through charging/discharging. And a mode of the generator rotor angle control that simultaneously control steam turbine and energy storage is given. The steam turbine is responsible for load following, and the energy storage is for providing damping torque and following small load disturbance. The simulations show that this mode has the advantages of the existing rotor angle control, and it can also significantly reduce the actions of the steam turbine valve during load disturbances.
|
Received: 16 October 2020
|
|
|
|
Cite this article: |
ZHANG Zhibin,WEI Qiang. Analysis of the characteristics of generator rotor angle control combined with energy storage[J]. Electrical Engineering, 2021, 22(6): 60-65.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I6/60
|
[1] WEI Qiang, HAN Xueshan, GUO Weimin, et al.The principle of absolute rotor angle control and its effect on suppressing inter-area low frequency oscillations[J]. International Journal of Electrical Power & Energy Systems, 2014, 63: 1039-1046. [2] WEI Qiang, GUO Moufa, HAN Xueshan, et al.New approach of automatic generation control based on absolute rotor angle droop control[J]. IET Generation Transmission & Distribution, 2018, 12(14): 3561-3568. [3] 魏强, 韩学山, 郭为民, 等. 转子角控制模式下负荷跟踪机制的动模试验验证[J]. 电力自动化设备, 2016, 36(4): 165-170. [4] 魏强, 郭为民. 一种消除发电机间低频振荡的方法和系统[P]. 中国, CN201310321108.6, 2013-10-09. [5] 樊一娜, 吴博维, 李宇. 分布式储能系统对主动配电网的统一控制策略[J]. 电气技术, 2019, 20(5): 14-18. [6] 毕伟. 基于能量云管理平台的分布式储能系统技术应用研究[J]. 电气技术, 2018, 19(4): 67-71. [7] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. [8] 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. [9] 史林军, 陈中, 王海风, 等. 应用飞轮储能系统阻尼电力系统低频振荡[J]. 电力系统自动化, 2010, 34(8): 29-33. [10] 陈中, 杜文娟, 王海风, 等. 基于阻尼转矩分析法的储能系统抑制系统低频振荡[J]. 电力系统自动化, 2009, 33(12): 8-11. [11] 吴晋波, 文劲宇, 孙海顺, 等. 基于储能技术的交流互联电网稳定控制方法[J]. 电工技术学报, 2012, 27(6): 261-267. [12] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. [13] 胡炯, 吴雅璐, 李建, 等. 同步发电机绝对转子角测量方法研究[J]. 电网技术, 2006, 30(增刊2): 354-357. [14] 李妍, 荆盼盼, 王丽, 等. 通用储能系统数学模型及其PSASP建模研究[J]. 电网技术, 2012, 36(1): 51-57. [15] 梁辰. 储能辅助电力系统小干扰稳定控制作用机理研究[D]. 武汉: 华中科技大学, 2017. [16] 刘取. 电力系统稳定性及发电机励磁控制[M]. 北京: 中国电力出版社, 2007. |
|
|
|