|
|
Optimization configuration of energy storage based on the improved particle swarm optimization |
WEN Chunxue, ZHAO Tianci, YU Geng, WANG Peng, LI Jianlin |
Frequency Conversion Technology Engineering Research Center, North China University of Technology, Beijing 100144 |
|
|
Abstract Energy storage transfers power in the time dimension, which can suppress voltage fluctuations and reduce network loss. In order to reasonably configure energy storage, an energy storage optimization model is established, which is based on voltage volatility, network loss and configuration cost. The particle swarm optimization is improved by increasing the number of initial particles and selecting the scattered non-dominant particles as the initial particles to improve the randomness of the initial particles. In the speed update stage, the node voltage is used to guide the particle evolution direction and improve the calculation speed of the algorithm. Simulation results of using IEEE-33 node examples show that the improvement of the algorithm improves the stability, computational speed and accuracy. The improved energy storage configuration scheme reduces the node voltage fluctuation of the system and reduces the power loss.
|
Received: 12 May 2022
|
|
|
|
Cite this article: |
WEN Chunxue,ZHAO Tianci,YU Geng等. Optimization configuration of energy storage based on the improved particle swarm optimization[J]. Electrical Engineering, 2022, 23(10): 1-9.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I10/1
|
[1] 吴国沛, 王武, 张勇军, 等. 含光储系统的增量配电网时段解耦动态拓展无功优化[J]. 电力系统保护与控制, 2019, 47(9): 173-179. [2] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. [3] 汪致洵, 林湘宁, 丁苏阳, 等. 适应于海岛独立微网的交直流混合风力发电系统及其优化调度策略[J]. 中国电机工程学报, 2018, 38(16): 4692-4704. [4] 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述[J]. 电力建设, 2020, 41(6): 77-84. [5] 白桦, 王正用, 李晨, 等. 面向电网侧、新能源侧及用户侧的储能容量配置方法研究[J]. 电气技术, 2021, 22(1): 8-13. [6] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411. [7] HEMMATI R, SABOORI H, JIRDEHI M A.Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources[J]. Energy, 2017, 133: 380-387. [8] KHALID M, SAVKIN A V.Optimization and control of a distributed battery energy storage system for wind power smoothing[C]//2011 19th Mediterranean Con-ference on Control & Automation (MED), Corfu, Greece, 2011: 39-43. [9] 张效言, 李先允. 金属加工区分层储能优化配置方法研究[J]. 电气技术, 2022, 23(1): 49-55. [10] 李军徽, 张嘉辉, 李翠萍, 等. 参与调峰的储能系统配置方案及经济性分析[J]. 电工技术学报, 2021, 36(19): 4148-4160. [11] 袁铁江, 张昱, 栗磊, 等. 计及功率密度约束含氢储能的预装式多元储能电站容量优化配置研究[J]. 电工技术学报, 2021, 36(3): 496-506. [12] 肖浩, 裴玮, 杨艳红, 等. 计及电池寿命和经济运行的微电网储能容量优化[J]. 高电压技术, 2015, 41(10): 3256-3265. [13] 吴小刚. 配网储能系统的规划方法研究[D]. 北京: 华北电力大学, 2015. [14] 杜鹏, 彭咏龙, 黄江浩, 等. 含用户侧分布式储能的配电网降损分析[J]. 电力科学与工程, 2018, 34(8): 30-35. [15] 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置[J]. 电力系统保护与控制, 2020, 48(15): 116-124. [16] 施泉生, 王子轩, 任洪波, 等. 基于改进的模拟退火-粒子群算法的区域综合能源系统经济性运行[J]. 科学技术与工程, 2020, 20(26): 10801-10807. [17] 董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81. [18] 冯喜春, 张松岩, 朱天曈, 等. 基于区间二型模糊多属性决策方法的大规模储能选型分析[J]. 高电压技术, 2021, 47(11): 4123-4133. [19] 柴明哲, 高赐威, 陈涛, 等. 江苏省工业用户配置储能的经济性研究[J]. 电力需求侧管理, 2021, 23(3): 47-51. |
|
|
|