|
|
Optimal configuration of electricity-hydrogen hybrid energy storage on photovoltaic generation side based on ensemble local mean decomposition and correlation analysis |
LIU Yuchen, YAN Qunmin, GUO Yang, LIU Xinyu, SANG Xingyong |
School of Electrical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001 |
|
|
Abstract Intermittency and volatility of photovoltaic output still have great influence on power grid. Space-time translation of electric power by energy storage device can improve the controllability of photovoltaic power generation and improve the quality of power supply. In this paper, the capacity configuration method of hybrid energy storage system (HESS) composed of battery, super capacitor and hydrogen energy is proposed. Firstly, the mathematical models of photovoltaic power station and energy storage system are established. The difference between the dispatching power of power station and the actual output power of photovoltaic power generation is taken as the reference power of HESS. High, medium and low frequency components of HESS reference power are determined by ensemble local mean decomposition (ELMD) and Pearson product moment correlation coefficient (PPMCC). Under the constraint of the state of charge (SOC) of the three energy storage devices, the power of super capacitor, hydrogen energy storage and battery is allocated successively. The battery cycle life is considered, and the battery damage model is incorporated into the life cycle cost (LCC) assessment system of HESS. Finally, through the simulation of the actual scheduling data of a photovoltaic power station in Matlab, it is proved that the method can effectively decompose and reconstruct the HESS power according to different working frequency bands, and the advantages of HESS relative to single energy storage in economy and technology are reflected.
|
Received: 20 June 2022
|
|
|
|
Cite this article: |
LIU Yuchen,YAN Qunmin,GUO Yang等. Optimal configuration of electricity-hydrogen hybrid energy storage on photovoltaic generation side based on ensemble local mean decomposition and correlation analysis[J]. Electrical Engineering, 2022, 23(11): 21-29.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I11/21
|
[1] 张俊涛, 程春田, 申建建, 等. 考虑风光不确定性的高比例可再生能源电网短期联合优化调度方法[J]. 中国电机工程学报, 2020, 40(18): 5921-5932. [2] 李妍, 王洁, 王少荣, 等. 计及新能源特性的配电网评估指标及其隶属度函数的研究[J]. 电力系统保护与控制, 2018, 46(8): 43-49. [3] 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8): 15-24. [4] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. [5] 谢丽蓉, 郑浩, 魏成伟, 等. 兼顾补偿预测误差和平抑波动的光伏混合储能协调控制策略[J]. 电力系统自动化, 2021, 45(3): 130-138. [6] 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48. [7] 齐晓光, 姚福星, 朱天曈, 等. 考虑大规模风电接入的电力系统混合储能容量优化配置[J]. 电力自动化设备, 2021, 41(10): 11-19. [8] 郑熙东, 江修波. 基于完备经验模态分解与能量熵的混合储能系统功率分配[J]. 电气技术, 2020, 21(11): 61-65, 70. [9] 吴倩, 王洋, 王琳媛, 等. 计及波动平抑与经济性的风光储系统中混合储能容量优化配置[J]. 电测与仪表, 2022, 59(4): 112-119. [10] SHARMA R K, MISHRA S.Dynamic power manage- ment and control of a PV PEM fuel-cell-based standalone AC/DC microgrid using hybrid energy storage[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 526-538. [11] 李瑞民, 张新敬, 徐玉杰, 等. 风光互补系统中混合储能容量优化配置研究[J]. 储能科学与技术, 2019, 8(3): 512-522. [12] 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516. [13] NOR N M, ALI A, IBRAHIM T, et al.Battery storage for the utility-scale distributed photovoltaic gener- ations[J]. IEEE Access, 2017, 6: 1137-1154. [14] 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062. [15] 黄大为, 齐德卿, 蔡国伟. 基于制氢系统的平抑风电输出功率方法研究[J]. 太阳能学报, 2016, 37(12): 3155-3162. [16] HU Qiang, LIN Jin, ZENG Qing, et al.Optimal control of a hydrogen microgrid based on an experiment validated P2HH model[J]. IET Renewable Power Generation, 2020, 14(3): 364-371. [17] 肖白, 刘健康, 张博, 等. 考虑阶梯碳交易和需求响应的含氢储能的并网型微电网优化配置[J/OL]. 电力自动化设备, DOI: 10.16081/j.epae.202204074. [18] ZHANG Luyao, CHANG Jianhua, LI Hongxu, et al.Noise reduction of LiDAR signal via local mean decomposition combined with improved thresholding method[J]. IEEE Access, 2020, 8: 113943-113952. [19] 王朝阁, 李宏坤, 杨蕊, 等. 基于自适应噪声参数优化ELMD的行星齿轮箱故障诊断研究[J]. 振动与冲击, 2020, 39(18): 60-69. [20] 肖勇, 赵云, 涂治东, 等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制, 2019, 47(11): 37-43. [21] 罗煜, 黄梅, 鲍谚, 等. 基于储能SOC优化控制的风储电站实时跟踪发电计划控制策略[J]. 电工技术学报, 2016, 31(增刊1): 214-220. [22] 傅晓梅, 温步瀛, 唐雨晨. 考虑电池储能运行特性的微网优化运行[J]. 电气技术, 2021, 22(4): 12-19. [23] 肖浩, 裴玮, 杨艳红, 等. 计及电池寿命和经济运行的微电网储能容量优化[J]. 高电压技术, 2015, 41(10): 3256-3265. [24] ZAKERI B, SYRI S.Electrical energy storage systems: a comparative life cycle cost analysis[J]. Renewable & Sustainable Energy Reviews, 2015, 42(2): 569-596. |
|
|
|