|
|
State of charge estimation of lithium-ion battery based on Adam optimization algorithm and long short-term memory neural network |
PAN Jinye, WANG Miaomiao, KAN Wei, GAO Yongfeng |
School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116000 |
|
|
Abstract Lithium-ion batteries are used as energy storage system components for electric vehicles, unmanned aerial vehicles and power electronic equipment. Accurate state of charge (SOC) estimation plays an important role in correct decision-making, safe control and maintenance. Aiming at the problem of lithium-ion battery SOC estimation, this paper uses long short-term memory (LSTM) neural network to build a lithium-ion battery SOC prediction model, taking battery voltage, current and temperature as inputs, building a multi-layer LSTM prediction model and adopting Adam optimization algorithm. The Adam optimization algorithm complete the training of the LSTM model. The verification of training and test results shows that adding Adam algorithm and Dropout regularization method to the model training process is robust to the nonlinearity of the experimental data set and the uncertainty of the initial SOC.
|
Received: 22 September 2021
|
|
|
|
Cite this article: |
PAN Jinye,WANG Miaomiao,KAN Wei等. State of charge estimation of lithium-ion battery based on Adam optimization algorithm and long short-term memory neural network[J]. Electrical Engineering, 2022, 23(4): 25-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I4/25
|
[1] 张吉星. 纯电动汽车动力锂离子电池SOC估计算法研究[D]. 长春: 吉林大学, 2015. [2] 杨若岑, 冬雷, 廖晓钟, 等. 电池剩余容量估算方法综述[J]. 电气技术, 2019, 20(10): 1-5, 57. [3] 明彤彤, 赵晶, 王晓磊, 等. 基于改进LSTM的脉冲大倍率工况下锂电池SOC估计[J]. 电力系统保护与控制, 2021, 49(8): 144-150. [4] 曹梦舟, 张艳. 基于卷积-长短期记忆网络的电能质量扰动分类[J]. 电力系统保护与控制, 2020, 48(2): 86-92. [5] 姚远, 陈志聪, 吴丽君, 等. 一种基于改进网格搜索和广义回归神经网络的锂离子电池健康状态估计方法[J]. 电气技术, 2021, 22(7): 32-37. [6] 崔红芬, 杨波, 蒋叶, 等. 基于模糊控制和SOC自恢复储能参与二次调频控制策略[J]. 电力系统保护与控制, 2019, 47(22): 89-97. [7] HOCHREITER S, SCHMIDHUBER J.Long short- term memory[J]. Neural Computation, 1997, 9(8): 1753-1780. [8] 董洲洋, 徐卫明, 庄昊, 等. 深度学习的BP神经网络在GNSS水准拟合中的应用[J]. 海洋测绘, 2019(5): 26-29. [9] KINGMA D P, BA J L.Adam: a method for stochastic optimization[C]//International Conference on Learning Representations (ICLR), San Diego, CA, 2015: 1-15. [10] 金亮, 冯裕霖, 曹佳豪, 等. 基于注意力与长短期记忆网络的变压器代理模型[J]. 电气技术, 2021, 22(7): 65-71. [11] 明彤彤, 王凯, 田冬冬, 等. 基于LSTM神经网络的锂离子电池荷电状态估算[J]. 广东电力, 2020, 33(3): 26-33. [12] 舒征宇, 翟二杰, 李镇翰, 等. 基于Dropout优化算法和LSTM的铅酸蓄电池容量预测[J/OL]. 电源学报, 2021, https://kns.cnki.net/kcms/detail/12.1420.TM. 20210728.0848.004.html. [13] 唐思豪, 滕召胜, 孙彪, 等. ADAM改进BP神经网络与动态称重应用[J]. 电子测量与仪器学报, 2021, 35(4): 127-135. [14] 张振宇, 汪光森, 聂世雄, 等. 脉冲大倍率放电条件下磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2019, 34(8): 1769-1779. [15] QIN Y, ADAMS S, YUEN C.Transfer learning-based state of charge estimation for lithium-ion battery at varying ambient temperatures[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7304-7315. |
|
|
|