|
|
Research on an adaptive droop control strategy applied in voltage source converter based multi-terminal high voltage direct current transmission system |
BAI Guoyan1, LI Chunbao2, MENG Fancheng2, LI Mushu2, MA Wenzhong2 |
1. China Railway 16th Bureau Group Electrification Engineering Co., Ltd, Beijing 100018; 2. China University of Petroleum (East China), Qingdao, Shandong 266580 |
|
|
Abstract The stability of DC voltage has become the key issue of voltage source converter based multi-terminal high voltage direct current transmission (VSC-MTDC) system. In order to overcome the drawbacks of conventional droop strategy in term of complexity of parameters tuning, low control accuracy and lack of flexibility in various circumstances, an improved adaptive droop strategy is proposed in this paper. The droop parameters are designed based on the optimal analysis of load flow and power sharing of the VSC-MTDC system and adjusted adaptively by the control law which is related to local electrical quantities. A four-terminal VSC-MTDC simulation model is built in PSCAD/EMTDC and the results of simulations prove that the proposed droop strategy can promote the performance of the VSC converter under different operating conditions and enhance the flexibility and reliability of the system.
|
Received: 04 January 2022
|
|
|
|
Cite this article: |
BAI Guoyan,LI Chunbao,MENG Fancheng等. Research on an adaptive droop control strategy applied in voltage source converter based multi-terminal high voltage direct current transmission system[J]. Electrical Engineering, 2022, 23(5): 1-8.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I5/1
|
[1] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17. [2] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-8. [3] CHAUDHURI N R, CHAUDHURI B, MAJUMDER R, et al.Multi-terminal direct-current grids: modeling, analysis, and control[M]. New Jersey: IEEE Press, 2014. [4] SHARIFABADI K, HARNEFORS L, NEE H, et al.Design, control and application of modular multilevel converters for HVDC transmission systems[M]. UK: John Wiley & Sons, Inc., 2016. [5] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. [6] 沈周丽, 李锐华, 胡波. 基于负序电压前馈的改进型柔性直流输电系统有功功率控制策略[J]. 电气技术, 2021, 22(11): 1-6. [7] 谈竹奎, 徐玉韬, 班国邦, 等. 基于主从控制的交直流混合微电网多模式运行与切换策略[J]. 电气技术, 2018, 19(9): 60-64. [8] 曹昕, 韩民晓, 周光阳, 等. 基于自律分散控制的网孔型直流电网下垂系数计算方法[J]. 电工技术学报, 2020, 35(24): 5164-5174. [9] 罗永捷, 李耀华, 王平, 等. 多端柔性直流输电系统直流电压自适应下垂控制策略研究[J]. 中国电机工程学报, 2016, 36(10): 2588-2599. [10] 阎发友, 汤广福, 贺之渊, 等. 基于MMC的多端柔性直流输电系统改进下垂控制策略[J]. 中国电机工程学报, 2014, 34(3): 397-404. [11] 陈朋, 李梅航, 严兵, 等. 适用于多端柔性直流输电系统的灵活下垂控制策略[J]. 电网技术, 2016, 40(11): 3433-3440. [12] 孙黎霞, 陈宇, 宋洪刚, 等. 适用于VSC-MTDC的改进直流电压下垂控制策略[J]. 电网技术, 2016, 40(4): 1037-1043. [13] CHEN Xia, WANG Long, SUN Haishun, et al.Fuzzy logic based adaptive droop control in multi-terminal HVDC for wind power integration[J]. IEEE Transa- ctions on Energy Conversion, 2017, 32(3): 1200-1208. [14] LI Guiyuan, DU Zhengchun, SHEN Chen, et al.Coordinated design of droop control in MTDC grid based on model predictive control[J]. IEEE Transa- ctions on Power Systems, 2018, 33(3): 2816-2828. [15] 曾琦, 李兴源, 张立奎. 考虑运行损耗和功率裕度的VSC-MTDC系统改进优化下垂控制策略[J]. 高电压技术, 2016, 42(10): 3117-3125. [16] VRANA T K, DENNETIERE S, YANG Y, et al.The CIGRE B4 DC grid test system[J]. CIGRE Electra, 2013, 270: 1-12. [17] AGBEMUKO A, NDREKO M, POPOV M, et al.A knowledge-based approach to voltage and power control in HV-MTDC grids[C]//2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, Slovenia, 2016: 1-6. [18] 吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250. [19] 雷婧婷, 安婷, 杜正春, 等. 含直流配电网的交直流潮流计算[J]. 中国电机工程学报, 2016, 36(4): 911-918. [20] 姚亚鑫, 刘锋, 刘璋玮, 等. 面向长期调频的风机非线性下垂控制设计[J]. 电网技术, 2018, 42(6): 1845-1852. |
|
|
|