|
|
Wavelet decomposition and extraction method of defect magnetic flux leakage testing signals based on waveform similarity |
YANG Jie1, LI Hongmei2, ZHAO Chuntian1,2, YANG Hongli3 |
1. Southern University of Science and Technology, Shenzhen, Guangdong 518055; 2. Sichuan University, Chengdu 610207; 3. Shandong University of Science and Technology, Qingdao, Shandong 266590 |
|
|
Abstract Magnetic flux leakage testing (MFLT) technology has been widely used in engineering to identify and measure defects in ferromagnetic components. Its capability in reconstructing defects in the three-dimensional (3D) form, especially for general complex defects formed naturally (such as by corrosion and/or fatigue), is one of the primary indexes representing the technological advances. Because the actual defect shape is irregular and often contains multiple pits, its magnetic flux leakage detection signals affect each other. To improve the accuracy of reconstructing defects in 3D and speed up the data processing, the prerequisite is to automatically strip off and extract the valid defect data from the MFLT signals. To effectively locate, separate, and integrate information for reconstructing each defect, a wavelet decomposition and extraction method is proposed. Based on the morphological characteristics of the MFLT signals, a wavelet basis is selected that matches the characteristics of the defect signals closely. This wavelet basis is used in the multi-scale decomposing of the MFLT signals and in the calculating of the associated wavelet high frequency coefficients. Then the wavelet coefficient is utilized in identifying and locating the defects in each channel of the signals, as well as in extracting the MFLT data corresponding to each defect. Finally, by examining the signals of each defect in a channel and integrating all the associated data in the adjacent channels, a complete set of data related to each defect is obtained. The proposed method can be applied to quickly identify, extract and integrate the MFLT data for all defects, which provides the basis for the 3D defect reconstruction.
|
Received: 06 January 2022
|
|
|
|
Cite this article: |
YANG Jie,LI Hongmei,ZHAO Chuntian等. Wavelet decomposition and extraction method of defect magnetic flux leakage testing signals based on waveform similarity[J]. Electrical Engineering, 2022, 23(6): 8-16.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I6/8
|
[1] 孟祥吉, 宋兵臣, 刘健, 等. 管道部件及典型缺陷漏磁内检测图像化显示研究[J]. 管道技术与设备, 2021(1): 26-32. [2] 戴光, 吴忠义, 朱祥军, 等. 管道内外壁缺陷的漏磁检测[J]. 无损检测, 2018, 40(3): 19-23, 28. [3] 杨理践, 耿浩, 高松巍. 长输油气管道漏磁内检测技术[J]. 仪器仪表学报, 2016, 37(8): 1736-1746. [4] LI Hongmei, ZHANG Fuchen, YANG Bin, et al.Dis- tribution characteristics of calculated magnetic charges around discontinuous structures in magnetic memory testing[J]. International Journal of Applied Electro- magnetics and Mechanics, 2019, 59(4): 1321-1329. [5] LI Hongmei, HUANG Ranran, ZHAO Chuntian, et al.3D reconstructing of arbitrary defects with magnetic flux leakage testing signals[C]//2020 IEEE Far East NDT New Technology and Application Forum (FENDT), Kunming, 2020: 51-55. [6] 王婷婷. 金属表面缺陷特征智能提取及特征分析的方法研究[D]. 沈阳: 东北大学, 2017. [7] LI Min, LI Xue, GAO Chenxing, et al.Acoustic microscopy signal processing method for detecting near-surface defects in metal materials[J]. NDT and E International, 2019, 103: 133-140. [8] MALLAT S G.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society, 1989, 315(1): 69-87. [9] CHUI C K.An introduction to wavelets[M]. American: Academic Press Inc., 1992. [10] 周志昊. 基于小波变换的电力变压器直流偏磁时励磁电流研究[J]. 电气技术, 2020, 21(6): 69-72. [11] 胡昌华, 张军波, 夏军, 等. 基于MATLAB的系统分析与设计—小波分析[M]. 西安: 西安电子科技大学出版社, 2000. [12] 杨福生. 小波变换的工程分析与应用[M]. 北京: 北京科学出版社, 2000. [13] 乔苏朋, 杨艳, 陈世群, 等. 光伏阵列故障检测方法综述[J]. 电气技术, 2021, 22(7): 1-6. [14] 米正英, 王瑜, 王立东, 等. 电弧信号小波去噪分析[J]. 电气技术, 2020, 21(3): 103-107, 116. [15] 肖迎群, 冯良贵, 何怡刚. 基于小波分形和核判别分析的模拟电路故障诊断[J]. 电工技术学报, 2012, 27(8): 230-238. [16] 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11): 1-6. [17] 崔芮华, 曹欢. 基于相空间重构的航空电弧故障识别方法[J]. 电工技术学报, 2020, 35(增刊1): 243-250. [18] 钟建林, 何友, 任献彬. 基于波形相似度的容差模拟电路软故障诊断[J]. 电工技术学报, 2012, 27(8): 222-229. [19] 彭海. 皮尔逊相关系数应用于医学信号相关度测量[J]. 电子世界, 2017(7): 163. [20] 陈世群, 高伟, 陈孝琪, 等. 一种基于极限学习机和皮尔逊相关系数的光伏阵列故障快速诊断方法[J].电气技术, 2021, 22(10): 57-64. [21] 朱延功, 高学山, 刘嵩, 等. 使用小波分析方法提取焊缝位置信息[J]. 哈尔滨工业大学学报, 2001, 33(3): 389-392. |
|
|
|