|
|
Analysis of building shielding effectiveness against lightning electromagnetic pulse based on medium wave broadcast signal measurement |
LUO Jiajun1, GUO Guang2, WU Zhihui2 |
1. Shenzhen DOWIN Lightning Technologies Co., Ltd, Shenzhen, Guangdong 518132; 2. Zhuhai Doumen District Public Meteorological Service Center, Zhuhai, Guangdong 519125 |
|
|
Abstract In this paper, it is proposed to use the amplitude modulation (AM)/frequency modulation (FM) field strength meter to test the medium wave signal level to calculate the shielding effectiveness of the building against the lightning electromagnetic pulse (LEMP). Two different frequency points of medium-wave broadcast stations are selected to simulate LEMP signal source to measure signal level at different vertical and horizontal space of the building. The shielding effectiveness and attenuation amount are calculated. The linear regression analysis of the test data shows that the top floor in the vertical space has the largest attenuation of LEMP, and in horizontal space, the farther away from the window and other shielding grids, the greater the signal attenuation. It is also found that attenuation is positively correlated with signal frequency and test altitude. It provides valuable theoretical data and application support for LEMP shielding design and shielding efficiency detection of electronic system.
|
Received: 16 May 2022
|
|
|
|
Cite this article: |
LUO Jiajun,GUO Guang,WU Zhihui. Analysis of building shielding effectiveness against lightning electromagnetic pulse based on medium wave broadcast signal measurement[J]. Electrical Engineering, 2022, 23(9): 48-53.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I9/48
|
[1] 杨克俊. 电磁兼容原理与设计技术[M]. 2版. 北京: 人民邮电出版社, 2011. [2] 周歧斌, 史一泽, 王振兴, 等. 雷电电磁脉冲对风机机舱电磁环境的影响与防护研究[J]. 电瓷避雷器, 2021(3): 51-56, 155. [3] 贾佳明, 刘昆. 基于人工触发闪电对击间过程近区磁场的测量与仿真[J]. 成都信息工程大学学报, 2019, 34(2): 138-142. [4] 雷电防护第4部分: 建筑物内电气和电子系统: GB/T 21714 GB/T 21714.4—2015[S]. 北京: 中国标准出版社, 2016. [5] 建筑物防雷设计规范: GB 50057—2010[S] GB 50057—2010[S]. 北京: 中国计划出版, 2011. [6] 建筑物防雷装置检测技术规范: GB/T 21431—2015[S] GB/T 21431—2015[S]. 北京: 中国标准出版社, 2015. [7] 李顺, 行鸿彦, 易秀成. 雷电流信号的频谱与陡度性能分析[J]. 电子测量技术, 2019, 42(18): 106-111. [8] 孙伟, 王影影, 姚学玲, 等. 10/1000μs雷电流测量Rogowski线圈的研制[J]. 电瓷避雷器, 2020(5): 1-6, 14. [9] 孔维奇, 王磊, 王超, 等. 基于VLF/LF三维雷电探测数据的云-地闪电频谱差异性分析[J]. 电瓷避雷器, 2021(3): 142-148, 210. [10] 罗佳俊, 冯海洋, 冷丁丁, 等. 基于低通滤波原理的电涌保护器超低残压研究[J]. 电气技术, 2022, 23(3): 17-22, 30. [11] 邓宇翔, 陈绍东. 基于人工触发闪电试验雷电流的频谱分析[J]. 广东气象, 2014, 36(2): 67-70, 73. [12] 陈卓. DAM 10kW中波发射机天线驻波比和网络驻波比的监测原理[J]. 电子制作, 2021(16): 71-72, 49. [13] 杨文丽, 夏峰. 无线电信号场强测量方法研究[C]// 2013年全国无线电应用与管理学术会议论文集, 天津, 2013: 156-160. [14] 刘荣美, 汪友华, 张岩. 建筑结构中雷电流和磁场分布特性的频域有限元方法分析[J]. 电工技术学报, 2013, 28(增刊2): 140-145. [15] 刘越, 朱德剑. 中波广播场强收测方法及影响因素探讨[J]. 西部广播电视, 2018(19): 237-239. [16] 王璟, 王琳. 中波途经建筑物空间畸变的电磁辐射环境影响分析[J]. 安全与环境工程, 2014, 21(5): 58-63, 70. |
|
|
|