|
|
Remaining life prediction of lithium-ion battery based on local mean decomposition and extreme learning machine |
YU Pei, WANG Changle |
Department of Basic Courses, China Fire and Rescue Institute, Beijing 102202 |
|
|
Abstract The remaining useful life (RUL) of lithium-ion battery is difficult to predict accurately, and the capacity data cannot be measured online in real time. Based on indirect health factors, a method for predicting the remaining useful life of lithium-ion battery is proposed in this paper. Firstly, the discharge voltage rate is extracted as an indirect health parameter index, and the discharge voltage rate data is decomposed by local mean decomposition (LMD). Then the grey correlation degree is used to verify the high correlation degree between the decoupled discharge voltage rate data and the battery capacity, and the extreme learning machine (ELM) training model is used to predict the remaining useful life of lithium-ion battery. Finally, the indirect health factors are input into the LMD-ELM model to obtain the accurate prediction value of battery capacity. The NASA data set is used to verify that the mean square error of the remaining useful life of lithium-ion battery predicted by the method proposed in this paper is less than 0.22%, and the average absolute percentage error is less than 3.12%.
|
Received: 20 June 2022
|
|
|
|
Cite this article: |
YU Pei,WANG Changle. Remaining life prediction of lithium-ion battery based on local mean decomposition and extreme learning machine[J]. Electrical Engineering, 2023, 24(1): 23-28.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I1/23
|
[1] 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. [2] 吴菲, 郑秀娟. 基于PF-GPR算法的锂离子电池剩余使用寿命预测[J]. 武汉科技大学学报, 2022, 45(3): 189-196. [3] 刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16. [4] 刘子英, 钱超, 朱琛磊. 基于IPSO-Elman的锂电池剩余寿命预测[J]. 现代电子技术, 2020, 43(12): 100-105. [5] 廖子豪, 于丽娅, 李少波, 等. 基于SCN的锂电池剩余寿命预测[J]. 组合机床与自动化加工技术, 2022(5): 146-150. [6] 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J].电工技术学报, 2020, 35(18): 3979-3993. [7] 来鑫, 孟正, 韩雪冰, 等. 基于特征电压模型的锂离子电池容量估计与RUL预测[J]. 汽车安全与节能学报, 2022, 13(1): 194-201. [8] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. [9] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. [10] 姚远, 陈志聪, 吴丽君, 等. 一种基于改进网格搜索和广义回归神经网络的锂离子电池健康状态估计方法[J]. 电气技术, 2021, 22(7): 32-37. [11] 陈轩伟. 基于BP-QR模型的负荷区间预测[J]. 电气技术, 2022, 23(4): 14-17, 24. [12] 陈毅, 黄妙华, 王树坤. 基于数据驱动的锂电池剩余容量估计[J]. 自动化与仪表, 2017, 32(8): 69-73. |
|
|
|