|
|
Fault line detection and fault section location method in resonant grounding systems based on SOM and K-means clustering |
OU Yizhe, ZHU Xi |
Zhangzhou Power Supply Company, State Grid Fujian Electric Power Co., Ltd, Zhangzhou, Fujian 363000 |
|
|
Abstract When a single line to ground fault occurs in a resonant grounding system, the fault current is weak, and the ambient noise further weakens the fault current, making it difficult to obtain field data. This paper presents an algorithm for line selection and section location based on self-organizing map (SOM) and K-means clustering. Compared with the supervised learning algorithm, this method can extract fault features faster and does not require a large number of samples for training. The fault features extracted by the SOM algorithm are used as the input of K-means clustering, and no threshold is needed to identify fault lines and locate fault segments. Considering different ground resistance, fault angle, and fault distance, as well as the influence of environmental noise and sampling asynchrony, simulation analysis and experimental data validation are conducted. Simulation and experimental results show that this method can effectively identify fault lines and locate fault segments.
|
Received: 14 July 2023
|
|
|
|
Cite this article: |
OU Yizhe,ZHU Xi. Fault line detection and fault section location method in resonant grounding systems based on SOM and K-means clustering[J]. Electrical Engineering, 2023, 24(10): 23-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I10/23
|
[1] 束洪春. 配电网络故障选线[M]. 北京: 机械工业出版社, 2008. [2] 潘嵩, 鞠振河. 基于小波包分析的故障选线方法研究[J]. 沈阳工程学院学报(自然科学版), 2020, 16(4): 7-11. [3] 王康, 高伟, 杨耿杰. 基于高频分量的配电网高阻接地故障识别[J]. 电气技术, 2022, 23(2): 61-66, 87. [4] 殷浩然, 苗世洪, 郭舒毓, 等. 基于S变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备, 2021, 41(7): 88-96. [5] 谢李为, 曾祥君, 柳祎璇. 基于VMD-Hilbert变换的故障行波定位研究[J]. 电力系统保护与控制, 2018, 46(16): 75-81. [6] 邓丰, 徐帆, 曾哲, 等. 基于多源暂态信息融合的单端故障定位方法[J]. 电工技术学报, 2022, 37(13): 3201-3212. [7] LIN Cheng, GAO Wei, GUO Moufa.Discrete wavelet transform-based triggering method for single-phase earth fault in power distribution systems[J]. IEEE Transactions on Power Delivery, 2019, 34(5): 2058-2068. [8] 王静, 李泽滔. 配电网故障定位算法研究综述[J]. 智能计算机与应用, 2020, 10(3): 228-231, 235. [9] GUO Moufa, ZENG Xiaodan, CHEN Duanyu, et al.Deep-learning-based earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems[J]. IEEE Sensors Journal, 2018, 18(3): 1291-1300. [10] 喻锟, 胥鹏博, 曾祥君, 等. 基于模糊测度融合诊断的配电网接地故障选线[J]. 电工技术学报, 2022, 37(3): 623-633. [11] 林骏捷, 林佳壕, 郭谋发. 基于多暂态特征量聚类的配电网接地故障区段定位方法[J]. 电气技术, 2023, 24(5): 16-22. [12] 杨耿杰, 许晔, 高伟, 等. 基于能量谱相似度自适应聚类的配电网接地故障区段定位方法[J]. 电力自动化设备, 2021, 41(3): 25-32. [13] SANGOLE A P, LEONTITSIS A.Spherical self- organizing feature map: an introductory review[J]. International Journal of Bifurcation and Chaos, 2006, 16(11): 3195-3206. [14] 魏科文, 张靖, 何宇, 等. 基于VMD和相关性聚类的谐振接地系统单相接地故障选线[J]. 电力系统保护与控制, 2021, 49(22): 105-113. [15] 郭谋发. 配电网单相接地故障人工智能选线[M]. 北京: 中国水利水电出版社, 2020. |
|
|
|