|
|
Day-ahead electricity price forecasting based on the combined VMD-ICOA-BiLSTM model |
GONG Dandan |
Shanghai Electric Power Transmission & Distribution Group, Shanghai 200442 |
|
|
Abstract In order to improve the prediction accuracy of day-ahead electricity prices in the purchase and sales electricity market, this paper combines variational mode decomposition (VMD), improved coyote algorithm (ICOA) and bi-directional long and short-term memory (BiLSTM) network to propose a novel method for day-ahead electricity price forecasting. Firstly, to address the non-smoothness of the electricity price sequence, VMD is used to decompose the original sequence into several subsequences. Secondly, to address the problems of slow convergence and insufficient optimization performance of the coyote algorithm, the Sobol sequence is introduced into the coyote initialization, and the global optimum and local optimum is introduced into the group culture trend. Then, ICOA is used to optimize parameters of the BiLSTM and build an ICOA-BiLSTM prediction model for each subsequence. Finally, the prediction results of all sequences are superimposed to obtain the final prediction result of electricity price. Experiments are conducted on Denmark electricity market data, and the results show that the proposed method has good forecasting accuracy and generalization ability.
|
Received: 08 August 2023
|
|
|
|
[1] ZHOU M, YAN Z, NI Y X, et al.Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach[J]. IEE Proceedings- Generation, Transmission & Distribution, 2006, 153(2): 187. [2] 康义, 师刘俊, 郭刚. 基于WT-IPSO-BPNN的电力系统短期负荷预测[J]. 电气技术, 2021, 22(1): 23-28, 62. [3] MARCJASZ G, UNIEJEWSKI B, WERON R.On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks[J]. International Journal of Fore- casting, 2019, 35(4): 1520-1532. [4] 王洪涛, 邹斌. 基于动态贝叶斯网络的电价区间预测[J]. 电力系统保护与控制, 2022, 50(5): 117-127. [5] 姚子麟, 张亮, 邹斌, 等. 含高比例风电的电力市场电价预测[J]. 电力系统自动化, 2020, 44(12): 49-55. [6] 赵齐昌, 马帅旗. 基于极端梯度提升-长短期记忆神经网络组合模型的短期电力负荷预测[J]. 电工技术, 2022(3): 31-33, 37. [7] 谭敏戈, 蒋勃, 王建渊, 等. 基于双向长短期记忆深度学习模型的短期风功率预测方法研究[J]. 电网与清洁能源, 2020, 36(6): 85-91. [8] 廖清阳, 王军, 胡凯强, 等. 基于深度并行CNN- BiLSTM的能源互联网电负荷和热负荷联合预测模型[J]. 中国测试, 2022, 48(4): 146-153. [9] 刘甚臻, 马超. 基于小波变换和混合深度学习的短期光伏功率预测[J]. 可再生能源, 2023, 41(6): 744-749. [10] 王仲平, 何黎黎, 丁更乾. 基于EMD-LSTM-ARMA模型短期发电量组合预测[J]. 现代电子技术, 2023, 46(3): 151-155. [11] 张思毅, 刘明波, 雷振兴, 等. 基于集合经验模态分解和编码器-解码器的风电功率多步预测[J]. 南方电网技术, 2023, 17(4): 16-24. [12] 杨海涛, 邵天章, 尹志勇. 基于EEMD的混合储能平抑光伏输出电压波动[J]. 电工技术, 2022(8): 50-52, 131. [13] ZHANG Jinliang, TAN Zhongfu, WEI Yiming.An adaptive hybrid model for short term electricity price forecasting[J]. Applied Energy, 2020, 258: 114087. [14] 翟广松, 王鹏, 谢智锋, 等. 基于VMD-EMD-LSTM的日前电价预测[J]. 现代信息科技, 2022, 6(18): 84-88. [15] 陆磊, 张铭飞, 朱浩钰. 基于VMD-IPSO-LSSVM的短期电力负荷预测研究[J]. 电工技术, 2022(24): 175-178, 197. [16] 杨昭, 张钢, 赵俊杰, 等. 基于变分模态分解和改进粒子群算法优化最小二乘支持向量机的短期电价预测[J]. 电气技术, 2021, 22(10): 11-16. [17] WOLPERT D H, MACREADY W G.No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. [18] 常雨芳, 李金榜, 段群龙, 等. 基于MEEMD-FN- LSTM的冷热电联供系统负荷预测[J]. 电工技术, 2021(16): 59-63. [19] 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9): 3463-3476. [20] 吴松梅, 蒋建东, 燕跃豪, 等. 基于VMD-PSO-多核极限学习机的短期负荷预测[J]. 电力系统及其自动化学报, 2022, 34(5): 18-25. |
|
|
|