|
|
Feature extraction method of cable partial discharge signal based on NGO-VMD-HHT |
LI Siyao1, DONG Zhang1, CHEN Yani1, LIU Hui1, YANG Hankun2 |
1. Luohu Power Supply Bureau, Shenzhen Power Supply Bureau Co., Ltd, Shenzhen, Guangdong 518000; 2. College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114 |
|
|
Abstract The phenomenon of partial discharge within a cable predominantly mirrors the insulation condition of cable-based equipment. Addressing a range of challenges encompassing the intricate extraction of partial discharge characteristic data and the inherent limitations pertaining to extraction precision during cable partial discharge detection, a feature extraction method based on northern goshawk optimization (NGO)-variational mode decomposition (VMD)-Hilbert-Huang transform (HHT) is proposed. Initially, the iterative application of the NGO is employed to determine the optimal configuration parameters essential for conducting VMD. Consequently, the optimal count of decomposition layers and the corresponding penalty factor are ascertained through this process. Then, the collected partial discharge signal is decomposed by VMD to obtain multiple modal components based on the optimal decomposition parameters. Finally, the Hilbert marginal spectrum theory is used to extract the characteristic components. The experimental results show that the feature extraction method of cable partial discharge based on NGO-VMD-HHT proposed in this paper can effectively decompose the partial discharge signal and accurately extract the corresponding feature quantity.
|
Received: 08 August 2023
|
|
|
|
Cite this article: |
LI Siyao,DONG Zhang,CHEN Yani等. Feature extraction method of cable partial discharge signal based on NGO-VMD-HHT[J]. Electrical Engineering, 2023, 24(11): 35-41.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I11/35
|
[1] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819. [2] 王昊月, 王晓威, 孙茂伦, 等. XLPE电缆绝缘热老化的高压频域介电谱诊断方法[J]. 电工技术学报, 2022, 37(17): 4497-4507. [3] 马星河, 张登奎. 基于改进经验小波变换的高压电缆局部放电噪声抑制研究[J]. 电工技术学报, 2021, 36(增刊1): 353-361. [4] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. [5] 王增彬, 陈义龙, 孙帅, 等. 基于特征光谱的GIS尖端放电特性研究[J]. 广东电力, 2019, 32(4): 112-118. [6] 张泽权, 蔡新景. 基于COMSOL仿真的电力电缆局部放电检测传感器设计[J]. 电气技术, 2023, 24(4): 29-36. [7] 陶宇航, 张熹, 宫祥龙. 10kV电缆故障测距及定位典型案例分析[J]. 电气技术, 2022, 23(2): 88-93. [8] 郭自刚, 徐天乐, 陈玉林, 等. 配电网电缆故障在线监测及定位系统[J]. 电气技术, 2022, 23(11): 74-79. [9] 张苏祺, 李浩, 张宇宁, 等. 水泵水轮机复杂振动信号特征提取与智能识别[J/OL]. 水力发电学报: 1-10 [2023-09-25]. http://kns.cnki.net/kcms/detail/11.2241.TV.20230726.1557.006.html. [10] 王凡, 马军, 王晓东, 等. 一种改进的TVD电机轴承故障特征提取方法[J]. 振动与冲击, 2023, 42(10): 203-214. [11] 马海飞, 滕伟, 彭迪康, 等. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J/OL]. 中国电力: 1-8 [2023-09-25]. http://kns.cnki.net/kcms/detail/11.3265.TM.20230607.0859.002.html. [12] 张露, 颜宏文, 马瑞. 基于改进DBSCAN-RNN的电力负荷建模及可调特征提取[J]. 智慧电力, 2023, 51(3): 39-45. [13] 王孔贤, 邵英, 王黎明. 基于NGO-VMD-DE的单相接地故障信号特征提取[J]. 电子测量技术, 2023, 46(4): 60-68. [14] 张能文, 姜天尚, 杨凯铭, 等. 基于EMD-Hilbert和主成分降维的电机故障信号特征提取[J]. 工业控制计算机, 2023, 36(1): 53-55. [15] 杨云, 张昊宇, 薛元贺, 等. 基于VMD和排列熵的滚动轴承故障诊断研究[J]. 组合机床与自动化加工技术, 2021(6): 90-93. [16] 全一鸣, 喻敏, 王文波, 等. 基于分形优化的VMD和GA-BP的短期风速预测[J]. 太阳能学报, 2023, 44(7): 436-446. [17] 章涛, 陈勇旗, 廖紫洋, 等. 一种北方苍鹰参数优化的VMD-MRE轴承故障诊断方法[J/OL]. 机械科学与技术: 1-8 [2023-09-25]. DOI:10.13433/j.cnki.1003- 8728.20230226. [18] 赖纪东, 崔玉妹, 苏建徽, 等. 基于希尔伯特-黄变换的微电网主动小干扰稳定性评估方法[J]. 电力系统自动化, 2023, 47(13): 149-158. [19] 李振华, 程紫熠, 陈兴新, 等. 基于EMD-XGBoost模型的交流输电线路可听噪声有效数据预测方法研究[J]. 高压电器, 2023, 59(6): 180-187. [20] 常英贤, 桂纲, 杨涛, 等. 基于区块链与安全计算的电能质量扰动分析方法[J]. 现代电力, 2023, 40(5): 732-741. |
|
|
|