|
|
Prediction algorithm of new energy consumption in regional power grid based on bidirectional long short term memory network |
HE Anming, ZHAO Xin, WU Ligang, SUN Fei, WANG Chunyan |
Anhui Jiyuan Software Co., Ltd, Hefei 230088 |
|
|
Abstract In view of the increasingly serious problem of new energy consumption in regional power grids, and the technical difficulty, low efficiency and long consumption time of using optimization algorithms to evaluate the new energy consumption in regional power grids, this paper proposes a new energy consumption prediction method based on bidirectional long short term memory network (BiLSTM) for regional power grids. Firstly, the factors that affect the new energy consumption of regional power grid are analyzed, and the new energy consumption forecast data is prepared. Then, a new energy consumption prediction algorithm for regional power grids based on BiLSTM is proposed, and the historical power grid operation data training model is used to realize fast and accurate online prediction of new energy consumption in regional power grids. Finally, the validity of the method proposed in this paper is verified by actual power grid data, which provides reference for power grid operators.
|
Received: 04 January 2023
|
|
|
|
Cite this article: |
HE Anming,ZHAO Xin,WU Ligang等. Prediction algorithm of new energy consumption in regional power grid based on bidirectional long short term memory network[J]. Electrical Engineering, 2023, 24(3): 23-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I3/23
|
[1] 张振宇, 王文倬, 张钢, 等. 基于非时序模型的新能源消纳能力评估方法[J]. 电力系统自动化, 2019, 43(20): 24-30. [2] 刘纯, 屈姬贤, 石文辉. 基于随机生产模拟的新能源消纳能力评估方法[J]. 中国电机工程学报, 2020, 40(10): 3134-3144. [3] 张大海, 贠韫韵, 王小君, 等. 计及风光不确定性的新能源虚拟电厂多时间尺度优化调度[J]. 太阳能学报, 2022, 43(11): 529-537. [4] 蔡福霖, 胡泽春, 曹敏健, 等. 提升新能源消纳能力的集中式与分布式电池储能协同规划[J]. 电力系统自动化, 2022, 46(20): 23-32. [5] 朱俊澎, 施凯杰, 李强, 等. 考虑输电网潮流约束的时序生产模拟及新能源消纳能力评估[J]. 电网技术, 2022, 46(5): 1947-1955. [6] 曲凯, 李湃, 黄越辉, 等. 面向新能源消纳能力评估的年负荷序列建模及场景生成方法[J]. 电力系统自动化, 2021, 45(1): 123-131. [7] 张振宇, 王文倬, 张小奇, 等. 基于电力系统承载力指标的新能源装机规划方法[J]. 电网技术, 2021, 45(2): 632-639. [8] 曹阳, 李鹏, 袁越, 等. 基于时序仿真的新能源消纳能力分析及其低碳效益评估[J]. 电力系统自动化, 2014, 38(17): 60-66. [9] 彭波, 陈旭, 徐乾耀, 等. 面向新能源消纳的电网规划方法初探[J]. 电网技术, 2013, 37(12): 3386-3391. [10] 王继业. 人工智能赋能源网荷储协同互动的应用及展望[J]. 中国电机工程学报, 2022, 42(21): 7667-7682. [11] 汤涌, 姚伟, 王宏志, 等. 电网仿真分析与决策的人工智能方法[J]. 中国电机工程学报, 2022, 42(15): 5384-5406. [12] 颜融. 基于数据驱动的电力系统暂态稳定评估[D].杭州: 浙江大学, 2021. [13] 李秋红. 基于改进粒子群算法的前馈神经网络识别用户窃电行为[J]. 电气技术, 2022, 23(11): 44-48. [14] 臧国强, 刘晓莉, 徐颖菲, 等. 深度学习在电力设备缺陷识别中的应用进展[J]. 电气技术, 2022, 23(6): 1-7. [15] DAI Shengzhe, LI Li, LI Zhiheng.Modeling vehicle interactions via modified LSTM models for trajectory prediction[J]. IEEE Access, 2019, 7: 38287-38296. [16] HUANG Lian, PUN C M.Audio replay spoof attack detection by joint segment-based linear filter bank feature extraction and attention-enhanced DenseNet- BiLSTM network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1813-1825. |
|
|
|