|
|
Study on the grounding material and soil contact resistance determination |
CHEN Sifu1, TAO Xiaoli2, ZHU Yuanbo1, HU Songjiang1, ZHANG Guofeng1 |
1. He'nan STAR Power Equipment Co., Ltd, Xuchang, He'nan 461500; 2. Lhasa Power Supply Company of State Grid Tibet Electric Power Co., Ltd, Lhasa 850010 |
|
|
Abstract Correctly estimating the contact resistance between the grounding conductor and the soil of the grounding grid can effectively reduce the occurrence of “overprotection” and “underprotection” in the design of grounding materials of the grounding grid, and is of great significance for the reasonable selection of the type, conductor specification and material type of the grounding grid. Starting from the linear relationship between the contact resistance and the contact area between the grounding material and the soil, the previous methods are improved by using the hemispherical grounding electrode and return electrode arranged concentrically, including the linear relationship between grounding body resistance, grounding body-soil contact resistance and soil resistance, and the measurement method of contact resistance between grounding material and soil is studied. A hemispherical test model with concentric arrangement is established. The contact resistances of hard and soft grounding materials in different soil environments are effectively measured, and the test analysis is carried out for hot-dip galvanized steel and graphite-based flexible grounding materials. The results show that with the increase of soil particle size, the contact resistance between the grounding body and the soil increases, and the contact resistances of graphite-based flexible grounding body with soil in various soil environments are lower than that of hot-dip galvanized steel grounding body.
|
Received: 05 December 2022
|
|
|
|
Cite this article: |
CHEN Sifu,TAO Xiaoli,ZHU Yuanbo等. Study on the grounding material and soil contact resistance determination[J]. Electrical Engineering, 2023, 24(3): 31-35.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I3/31
|
[1] 李景丽, 张宇, 郭丽莹, 等. 复杂土壤结构对水电站接地装置散流机理影响分析[J]. 电工技术学报, 2017, 32(23): 167-175. [2] 彭永晶, 陆佳政, 方针, 等. 10kV配电线路杆塔接地电阻对耐雷水平影响研究[J]. 电瓷避雷器, 2019(4): 176-181. [3] 郭蕾, 古维富, 刘彬, 等. 杆塔接地装置的冲击阻抗建模及应用[J]. 电工技术学报, 2020, 35(10): 2239-2247. [4] 周洁, 李海滨, 聂文海, 等. 高土壤电阻率地区降阻措施研究[J]. 电气技术, 2018, 19(6): 46-49. [5] 张国锋, 惠康, 务孔永, 等. 石墨基柔性接地装置在输电线路中的适用性研究[J]. 电气技术, 2021, 22(10): 93-97, 103. [6] 佟继春, 田峻, 郭艳军, 等. 山区输电杆塔接地电阻特性分析[J]. 智慧电力, 2018, 46(1): 71-76. [7] 张国锋. 柔性石墨基玻纤降阻布的雨水冲刷和降阻效率性能及应用[J]. 当代化工, 2021, 50(9): 2136-2139. [8] 刘志刚, 荆文迪. 不同接地装置类型下接地电阻测量研究[J]. 电力勘测设计, 2022(1): 39-42, 79. [9] 周长江, 薛新慧, 郭晓静. 接地电阻的正确测量、影响因素及控制措施[J]. 电子世界, 2021(17): 194-195. [10] 曾嵘, 周佩朋, 王森, 等. 接地系统中接触电阻的仿真模型及其影响因素分析[J]. 高电压技术, 2010, 36(10): 2393-2397. [11] 胡松江, 务孔永, 朱毅男, 等. 接地体与土壤的接触电阻影响因素研究[J]. 电瓷避雷器, 2021(6): 133-139. [12] 李谦, 文习山. 基于安全性的大型接地网均压优化策略[J]. 高压电器, 2018, 54(6): 177-183. [13] 能昌信, 王彦文, 王琪, 等. 填埋场渗漏检测高压直流电法等效电路模型的建立[J]. 环境科学, 2005, 26(1): 200-203. [14] NAI Changxin, WANG Yanwen, WANG Qi, et al.Setup of high voltage direct circuit equivalent circuit model in leakage detection of landfill[J]. Environ- mental Science, 2005, 26(1): 200-203. [15] 杨春天. 温纳四极法在变电站土壤电阻率测量中的应用[J]. 电工技术, 2020(1): 25-27. [16] 方瑜. 四极法测量地网接地电阻的分析[J]. 高电压技术, 1989, 15(4): 43-46. [17] 解广润. 电力系统接地技术[M]. 北京: 水利电力出版社, 1991. [18] 李伟, 文习山, 潘卓洪, 等. 消除土壤电阻率测量引线间互感影响的方法研究[J]. 电瓷避雷器, 2017(5): 37-40. |
|
|
|